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ABSTRACT

In this paper, we define taxicab regular polygons and de-

termine which Euclidean regular polygons are also taxicab

regular, and which are not. Finally, we investigate the

existence or nonexistence of taxicab regular polygons.
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Pravilni poligoni u taxicab ravnini

SAŽETAK

U radu definiramo pravilne taxicab poligone i odredujemo

koji su pravilni euklidski poligoni ujedno i pravilni taxicab

poligoni, a koji nisu. Naposljetku, ispitujemo postojanje ili

nepostojanje pravilnih taxicab poligona.

Ključne riječi: taxicab udaljenost, euklidska udaljenost,

protractor geometrija, pravilni poligon

1 Introduction

A metric geometry consists of a setP , whose elements are
calledpoints, together with a collectionL of non-empty
subsets ofP , calledlines, and a distance functiond, such
that
1) every two distinct points inP lie on a unique line,
2) there exist three points inP , which do not lie all on one
line,
3) there exists a bijective functionf : l → R for all lines in
L such that| f (P)− f (Q)|= d(P,Q) for each pair of points
P andQ on l.

A metric geometry defined above is denoted by{P ,L,d}.
However, if a metric geometry satisfies the plane separa-
tion axiom below, and it has an angle measure function
m, then it is calledprotractor geometry and denoted by
{P ,L,d,m}.

4) For everyl in L, there are two subsetsH1 andH2 of P

(calledhalf planes determined byl) such that
(i) H1∪H2 = P − l (P with l removed),
(ii) H1 andH2 are disjoint and each is convex,
(iii) If A ∈ H1 andB ∈ H2, then[AB]∩ l 6= ∅ .

The taxicab metric was given by Minkowski [8] at
the beginning of the last century. Later, taxicab
plane geometry was introduced by Menger [6], and
developed by Krause [5], using the taxicab metric
dT (P,Q)=|x1− x2|+|y1− y2| instead of the well-known Eu-
clidean metricdE(P,Q)=[(x1−x2)

2+(y1−y2)
2]1/2 for the

distance between any two pointsP = (x1,y1) and Q =
(x2,y2) in the Cartesian coordinate plane (R2). If LE is
the set of all lines, andmE is the standard angle measure
function of the Euclidean plane, then{R2,LE ,dT ,mE} is a
model of protractor geometry, and it is calledtaxicab plane
(see [3], [7]). The taxicab plane is one of the simple non-
Euclidean geometries since it fails to satisfy the side-angle-
side axiom, but it satisfies all the remaining twelve axioms
of the Euclidean plane (see [5]). It is almost the same as
the Euclidean plane{R2,LE ,dE ,mE} since the points are
the same, the lines are the same, and the angles are mea-
sured in the same way. However, the distance functions are
different. Since taxicab plane have distance function dif-
ferent from that in the Euclidean plane, it is interesting to
study the taxicab analogues of topics that include the dis-
tance concept in the Euclidean plane. During the recent
years, many such topics have been studied in the taxicab
plane (see [10]). In this work, we study regular polygons
in the taxicab plane.

2 Taxicab Regular Polygons

As in the Euclidean plane, apolygon in the taxicab plane
consists of three or more coplanar line segments; the line
segments (sides) intersect only at endpoints; each endpoint
(vertex) belongs to exactly two line segments; no two line
segments with a common endpoint are collinear. If the
number of sides of a polygon isn for n > 3 andn ∈ N,
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then the polygon is called ann-gon. The following defini-
tions for polygons in the taxicab plane are given by means
of the taxicab lengths instead of the Euclidean lengths:

Definition 1 A polygon in the plane is said to be taxicab
equilateral if the taxicab lengths of its sides are equal.

Definition 2 A polygon in the plane is said to be taxicab
equiangular if the measures of its interior angles are equal.

Definition 3 A polygon in the plane is said to be taxicab
regular if it is both taxicab equilateral and equiangular.

Definition 2 does not give a new equiangular concept be-
cause the taxicab and the Euclidean measure of an angle
are the same. That is, every Euclidean equiangular polygon
is also the taxicab equiangular, and vice versa. However,
since the taxicab plane has a different distance function,
Definition 1 and therefore Definition 3 are new concepts.
In this study, we answer the following question: Which
Euclidean regular polygons are also the taxicab regular,
and which are not? Also we investigate the existence and
nonexistence of taxicab regular polygons.

Proposition 1 Let A, B, C and D be four points in the
Cartesian plane such that A 6= B and dE(A,B) = dE(C,D),
and let m1 and m2 denote the slopes of the lines AB and
CD, respectively.

(i) If m1 6= 0 6= m2, then dT (A,B)= dT (C,D) iff |m1|= |m2|
or |m1m2| = 1.

(ii) If mi = 0 or mi → ∞, then dT (A,B) = dT (C,D) iff
m j = 0 or m j → ∞, where i, j ∈ {1,2} and i 6= j.

Proof. We know from [4] that for any two pointsP andQ
in the Cartesian plane that do not lie on a vertical line, ifm
is the slope of the linePQ, then

dE(P,Q) = ρ(m)dT (P,Q) (1)

whereρ(m) = (1+ m2)1/2�(1+ |m|). If P andQ lie on a
vertical line, that ism → ∞, thendE(P,Q) = dT (P,Q).

(i) Let m1 6= 0 6= m2 and dE(A,B) = dE(C,D); then
by Equation (1),ρ(m1)dT (A,B) = ρ(m2)dT (C,D). If
dT (A,B) = dT (C,D), then ρ(m1) = ρ(m2), that is (1 +
m2

1)
1/2�(1+ |m1|) = (1+ m2

2)
1/2�(1+ |m2|). Simplify-

ing the last equation, we get(|m1|−|m2|)(|m1m2|−1)= 0.
Therefore|m1| = |m2| or |m1m2| = 1. If |m1| = |m2| or
|m1m2| = 1, thenm2 = m1, m2 = −m1, m2 = 1/m1 or
m2 = −1/m1, and one can easily see by calculations that
ρ(m1) = ρ(m2). ThereforedT (A,B) = dT (C,D).

(ii) Let mi = 0 or mi → ∞. Thenρ(mi) = 1. If dT (A,B) =

dT (C,D), then ρ(m j) = 1. Thus, m j = 0 or m j → ∞.
If m j = 0 or m j → ∞, then ρ(m j) = 1, and therefore
dT (A,B) = dT (C,D). �

The following corollary follows directly from Proposition
1, and plays an important role in our arguments.

Corollary 2 Let A, B and C be three non-collinear points
in the Cartesian plane such that dE(A,B) = dE(B,C).
Then, dT (A,B) = dT (B,C) iff the measure of the angle ABC
is π/2 or A and C are symmetric about the line passing
through B, and parallel to anyone of the lines x = 0, y = 0,
y = x and y = −x.

Note that Proposition 1 and Corollary 2 indicate also Eu-
clidean isometries of the plane that do not change the
taxicab distance between any two points: The Euclidean
isometries of the plane that do not change the taxicab dis-
tance between any two points are all translations, rotations
of π/2 and 3π/2 radians around a point, reflections about
lines parallel to anyone of the linesx = 0, y = 0, y = x
andy = −x, and their compositions; there is no other bi-
jections ofR2 ontoR2 which preserve the taxicab distance
(see [9]).

3 Euclidean Regular Polygons in Taxicab
Plane

Since every Euclidean regular polygon is already taxicab
equiangular, it is obvious that a Euclidean regular polygon
is taxicab regular if and only if it is taxicab equilateral. So,
to investigate the taxicab regularity of a Euclidean regular
polygon, it is sufficient to determine whether it is taxicab
equilateral or not. In doing so, we use following concepts:

Any Euclidean regular polygon can be inscribed in a cir-
cle and a circle can be circumscribed about any Euclidean
regular polygon. A point is called thecenter of a Eu-
clidean regular polygon if it is the center of the circle cir-
cumscribed about the polygon. A linel is calledaxis of
symmetry (AOS) of a polygon if the polygon is symmetric
aboutl, and in addition, ifl passes through two distinct
vertices of the polygon thenl is called thediagonal axis of
symmetry (DAOS) of the polygon. Clearly, every AOS of a
Euclidean regular polygon passes through the center of the
polygon.

Now, we are ready to investigate the taxicab regularity of
Euclidean regular polygons.

Proposition 3 No Euclidean regular triangle is taxicab
regular.
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Proof. Since the Euclidean lengths of two consecutive
sides are the same, and the angle between two consecu-
tive sides is not a right angle, by Corollary 2, any two con-
secutive sides must be symmetric about a line parallel to
anyone of the linesx = 0, y = 0, y = x andy =−x, in order
to have the same taxicab length. Suppose two consecutive
sides are symmetric about a line parallel to anyone of the
linesx = 0, y = 0, y = x andy =−x. Figure 1 and Figure 2
show such Euclidean regular triangles. A simple calcula-
tion shows that none of the other two AOS’s is parallel to
anyone of the linesx = 0, y = 0, y = x andy = −x. So, the
triangles in Figure 1 and Figure 2 are not taxicab equilat-
eral. Thus, no Euclidean regular triangle is taxicab regular.
�

Figure 1

Figure 2

Corollary 4 No Euclidean regular hexagon is taxicab reg-
ular.

Proof. It is clear that every Euclidean regular hexagon is
the union of six Euclidean regular triangles, and by Propo-
sition 1 the taxicab lengths of the sides of one of the Eu-
clidean regular triangles are the same as the taxicab lengths
of corresponding parallel sides of the Euclidean regular
hexagon as shown in Figure 3. Since no Euclidean reg-
ular triangle is taxicab equilateral, no Euclidean regular
hexagon is taxicab equilateral, either. Thus, no Euclidean
regular hexagon is taxicab regular. �

Figure 3

Proposition 5 Every Euclidean regular quadrilateral
(Euclidean square) is taxicab regular.

Proof. Since every side of the Euclidean square has the
same Euclidean length and the angle between every two
consecutive sides is a right angle (see Figure 4), by Corol-
lary 2, every side has the same taxicab length. So, ev-
ery Euclidean square is taxicab equilateral, and therefore
is taxicab regular. �

Figure 4

Proposition 6 Every Euclidean regular octagon, one of
whose DAOS’s is parallel to anyone of the lines x = 0,
y = 0, y = x and y = −x, is taxicab regular.

Proof. Let us consider the casex = 0. Clearly, every Eu-
clidean regular octagon has four DAOS’s, and if a DAOS
of a Euclidean regular octagon is parallel to the linex = 0,
then the other DAOS’s are parallel to anyone of the lines
y = 0, y = x andy = −x (see Figure 5). Since every two
consecutive sides of such a Euclidean regular octagon are
symmetric about a line parallel to anyone of the linesx = 0,
y = 0, y = x andy = −x, and every side has the same Eu-
clidean length, by Corollary 2, these sides have the same
taxicab length. So, a Euclidean regular octagon, one of
whose DAOS’s is parallel to the linex = 0 is taxicab equi-
lateral, and therefore is taxicab regular. The other cases are
similar. �
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Figure 5

Theorem 7 No Euclidean regular polygon, except the
ones in Proposition 5 and Proposition 6, is taxicab regular.

Proof. Let us classify Euclidean regular polygons as
(2n− 1)-gons and 2n-gons forn ≥ 2 (n ∈ N), and inves-
tigate them separately:

(i) The Euclidean regular(2n−1)-gons: The casen = 2 is
proved in Proposition 3. Letn > 2. It is clear that the num-
ber of AOS’s of a Euclidean regular(2n−1)-gon is 2n−1
(≥ 5), and each AOS of a Euclidean regular(2n − 1)-
gon passes through a vertex and the center of the polygon.
Therefore, there exists at least one AOS which is not par-
allel to the linesx = 0, y = 0, y = x andy = −x. Then,
there are at least two consecutive sides symmetric about a
line which is not parallel to the linesx = 0, y = 0, y = x
and y = −x. Also we know that the angle between two
consecutive sides of Euclidean regular(2n−1)-gons is not
a right angle. By Corollary 2, these consecutive sides do
not have the same taxicab length. Thus, ifn > 2, then Eu-
clidean regular(2n− 1)-gons are not taxicab equilateral,
and therefore are not taxicab regular. That is, no Euclidean
regular(2n−1)-gon is taxicab regular.

(ii) The Euclidean regular 2n-gons: The casen = 2 is in-
cluded in Proposition 5. The casen = 3 is proved in Corol-
lary 4. In order to exclude the case in Proposition 6, let
us consider a Euclidean regular octagon, none of whose
DAOS’s is parallel to anyone of the linesx = 0, y = 0,
y = x andy = −x for the casen = 4. By Corollary 2, no
two consecutive sides have the same taxicab length. Thus,
such a Euclidean regular octagon is not taxicab equilateral,
and therefore is not taxicab regular. Letn > 4. Clearly,
the number of the DAOS’s of a Euclidean regular 2n-gon
is n. Therefore, there exists at least one DAOS which is
not parallel to the linesx = 0, y = 0, y = x andy = −x.
Then, there are at least two consecutive sides symmetric
about a line which is not parallel to the linesx = 0, y = 0,
y = x andy = −x. Also we know that the angle between
two consecutive sides of Euclidean regular 2n-gons is not
a right angle forn > 4. By Corollary 2, these consecutive
sides do not have the same taxicab length. Thus, Euclidean

regular 2n-gons forn > 4 are not taxicab equilateral, and
therefore are not taxicab regular. The proof is completed.
�

4 Existence of Taxicab Regular 2n-gons

Now, we know which Euclidean regular polygons are taxi-
cab regular, and which are not. Furthermore, we also know
the existence of some taxicab regular polygons. However,
we do not have general knowledge about the existence of
taxicab regular polygons. In this section, we determine
some of them. The following theorem shows that there
exist taxicab regular 2n-gons by means of taxicab circles.
Recall that a taxicab circle with centerA and radiusr is
the set of all points whose taxicab distance toA is r. This
locus of points is a Euclidean square with centerA, each
side having slope±1, and each diagonal having length 2r
(see [2]).

Theorem 8 There exist two congruent taxicab regular 2n-
gons (n ≥ 2), having given any line segment as a side.

Proof. Clearly, the measure of each interior angle of an
equiangular 2n-gon is π(n − 1)/n radians. Let us con-
sider now any given line segmentA1A2 in the taxicab
plane. It is obvious that(n − 1) line segmentsAiAi+1

(2 ≤ i ≤ n), having the same taxicab lengthdT (A1,A2),
can be constructed such that the measure of the angle be-
tween every two consecutive segments isπ(n−1)/n radi-
ans, by using the taxicab circles with centerAi and radius
dT (A1,A2), as in Figure 6. Also it is not difficult to see that
]A2A1An+1+]AnAn+1A1 = π(n−1)/n

Figure 6

If we continue to construct line segmentsA′
iA

′
i+1 which

are symmetric toAiAi+1 (1 ≤ i ≤ n) about the midpoint
of A1An+1, respectively, we get a 2n-gon (see Figure 7).
Since symmetry about a point (rotation ofπ radians around
a point) preserves both taxicab lengths and angle mea-
sures, we havedT (Ai,Ai+1) = dT (A′

i,A
′
i+1) = dT (A1,A2)

(1≤ i ≤ n) and]Ai = ]A′
i = π(n−1)/n (2≤ i ≤ n). Also
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it is not difficult to see that]A1 = ]An+1 = π(n−1)/n.
Thus, the constructed 2n-gon is taxicab regular. Further-
more, on the other side of the lineA1A2, one can construct
another taxicab regular 2n-gon, having the same line seg-
mentA1A2 as a side, by using the same procedure (see Fig-
ure 8).

Figure 7

Figure 8

However, it is easy to see that these two taxicab regular 2n-
gons are symmetric about the midpoint of the line segment
A1A2, and they are congruent. �

In every taxicab regular 2n-gon, there aren line segments
joining the corresponding vertices of the 2n-gon (AiA′

i,
1 ≤ i ≤ n, for polygons in Figure 7 and Figure 8). We
call each of these line segments anaxis of the polygon.
Clearly, axes of every taxicab regular 2n-gon intersect at
one and only one point.

Example. Using the procedure given in the proof of The-
orem 8, one can easily construct taxicab regular 2n-gons,
having given any line segment as a side. To give exam-
ples, we construct a taxicab regular quadrilateral (taxicab
square), a taxicab regular hexagon, and a taxicab regular
octagon, having given line segmentAB as a side, in Figure
9, 10 and 11:

Figure 9

Figure 10

Figure 11

5 More About Taxicab Regular Polygons

By Proposition 5, we know that every Euclidean square
is taxicab regular, that is, a taxicab square. By Proposi-
tion 11 below, we will see that every taxicab square is also
Euclidean regular, that is, a Euclidean square. Thus, the
Euclidean and the taxicab squares always have the same
shape, and the only regular polygon having this property is
square.

Proposition 9 Let A, B, C and D be four points in the
Cartesian plane such that A 6= B and dT (A,B) = dT (C,D),
and let m1 and m2 denote the slopes of the lines AB and
CD, respectively.

(i) If m1 6= 0 6= m2, then dE(A,B)= dE(C,D) iff |m1|= |m2|
or |m1m2| = 1.

(ii) If mi = 0 or mi → ∞, then dE(A,B) = dE(C,D) iff
m j = 0 or m j → ∞, where i, j ∈ {1,2} and i 6= j.
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KoG•12–2008 H. B. Çolakoğlu, R. Kaya: Regular Polygons in the Taxicab Plane

Proof. The proof is similar to that of Proposition 1. �

The following corollary follows directly from Proposition
9:

Corollary 10 Let A, B, and C be three non-collinear
points in the Cartesian plane such that dT (A,B) =
dT (B,C). Then, dE(A,B) = dE(B,C) iff the measure of
the angle ABC is π/2 or A and C are symmetric about the
line passing through B, and parallel to anyone of the lines
x = 0, y = 0, y = x and y = −x.

Proposition 11 Every taxicab square is Euclidean regu-
lar.

Proof. Since every side of the taxicab square has the same
taxicab length and the angle between every two consecu-
tive sides is a right angle, by Corollary 10, every side has
the same Euclidean length. So, every taxicab square is Eu-
clidean equilateral, and therefore is Euclidean regular.�

We need a new notion to prove the next proposition: An
equiangular polygon with an even number of vertices is
calledequiangular semi-regular if sides have the same Eu-
clidean length alternately. There is always a Euclidean
circle passing through all vertices of an equiangular semi-
regular polygon (see [11]).

Proposition 12 Every taxicab regular octagon, one of
whose axes is parallel to anyone of the lines x = 0, y = 0,
y = x and y = −x, is Euclidean regular.

Proof. In every taxicab regular octagon, sides have the
same Euclidean length alternately since the measure of the
angle between any two alternate sides isπ/2 and sides have
the same taxicab length, by Proposition 9 and Corollary
10. Therefore, every taxicab regular octagon is equian-
gular semi-regular. It is obvious that if any two consecu-
tive sides of an equiangular semi-regular polygon have the
same Euclidean length, then the polygon is Euclidean reg-
ular. Let us consider a taxicab regular octagon,A1A2...A8,
one of whose axes, let us sayA1A5, is parallel to the line
y = 0, for one case (see Figure 12).
Then there exist a Euclidean circle with diameterA1A5,
passing through pointsA1,A2, ...,A8, and there exist a taxi-
cab circle with centerA1, passing through pointsA2 and
A8. Since the Euclidean and the taxicab circles are both
symmetric about the lineA1A5, the intersection points of
them,A2 andA8, are also symmetric about the same line.
Then two consecutive sidesA1A2 andA1A8 have the same
Euclidean length by Corollary 10. Therefore, every taxi-
cab regular octagon, one of whose axes is parallel to the
line y = 0, is Euclidean regular. The other cases are simi-
lar. �

Figure 12

Theorem 13 No taxicab regular polygon, except the ones
in Proposition 11 and Proposition 12, is Euclidean regular.

Proof. Assume that there exists a taxicab regular poly-
gon, except the ones in Proposition 11 and Proposition
12, that is also Euclidean regular. Then there exists a Eu-
clidean regular polygon, except the ones in Proposition 5
and Proposition 6, that is also taxicab regular. But this
is in contradiction with Theorem 7. Therefore, no taxi-
cab regular polygon, except the ones in Proposition 11 and
Proposition 12, is Euclidean regular. �

6 On the Nonexistence of Taxicab
(2n–1) - gons

The following theorem shows that there is no taxicab reg-
ular triangle:

Theorem 14 There is no taxicab regular triangle.

Proof. Every taxicab equiangular triangle is a Euclidean
regular triangle. Since no Euclidean regular triangle is
taxicab regular by Proposition 3, no taxicab equiangular
triangle is taxicab regular. Therefore, there is no taxicab
regular triangle. �

In addition to Theorem 14, we have seen that there is no
taxicab regular 5-gon, 9-gon and 15-gon using a computer
program calledCompass and Ruler [12]. However, we
could not reach any conclusion by reasoning about the ex-
istence or nonexistence of taxicab regular(2n− 1)-gons
for n = 4, n = 6, n = 7 andn ≥ 9. Our conjecture is that
there is no taxicab regular(2n− 1)-gon since there is no
center of symmetry of equiangular(2n−1)-gons. It seems
interesting to study the open problem: Does there exist any
taxicab regular(2n−1)-gon?

One can also consider the generalizations and variations
of our problem. One of them is determining the regu-
lar polygons of the taxicab space. The taxicab distance
between pointsP = (x1,y1,z1) andQ = (x2,y2,z2) in the
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Cartesian coordinate space (R3) is defined bydT (P,Q) =
|x1− x2|+ |y1− y2|+ |z1− z2| (see [1]). Clearly, the con-
cept of regular polygon can be defined similarly in the taxi-
cab space; and if regular polygons are determined, then
one can investigate regular polyhedra in the taxicab space.

This is also interesting subject since there are only 5 types
of regular polyhedra in the three dimensional Euclidean
space. However, the results of this work cannot be gener-
alized directly to the three dimensional taxicab space since
the taxicab distance is not uniform in all directions.
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