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ABSTRACT

In this article, we show that a linear space whose param-

eters are those of the complement of a subset in a finite

projective plane π of order n such that no line is removed

and a sufficient number of lines lost only one point, is

projectively extended linear space.
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O projektivno proširenim linearnim prostorima

SAŽETAK

U ovom članku se pokazuje da je projektivno prošireni

linearni prostor onaj linearni prostor čiji parametri su

parametri komplementa podskupa konačne projektivne

ravnine π reda n tako da niti jedan pravac nije odstranjen,

a dovoljan broj pravaca gubi samo jednu točku.

Ključne riječi: linearni prostor, projektivna ravnina,

afina ravnina, poluproširenje, paralelna klasa, projektivno

prošireni linearni prostor

1 Introduction

The complementation problem with respect to a projective
plane is the following:
Remove a certain subset of points and lines from the pro-
jective plane. Determine the parameters of the resulting
space. Now assume that you are starting with a space hav-
ing these parameters. Does this some howforce this sub-
set to reappear, thus giving an embedding in the original
projective plane? A number of people have considered
complementation problems([1] , [2] , [3] , ..., [10]). In 1970,
Dickey solved the problem for the case where the configu-
ration removed was a unital[6].
Let us first recall some definitions and results. For more
details, see[5].

Definition 1.1 A finite linear spaceis a pair(P ,L ), where
P is a finite set of points andL is a family of proper subsets
of P , which are called lines, such that

(L1) Any two distinct poins lie on exactly one line,

(L2) Any line contains at least two points.

Definition 1.2 A finite linear spaceS = (P ,L ) is called a
non-trivial (n+1)-regular linear space, n≥ 1, if

(i) Every point is on n+1 lines

(ii) No line contains all points ofS .

Definition 1.3 Let S = (P ,L ) be a finite linear space. If
there exists at least one parallel class inS , this class is
called ideal point of S . We construct a new structure
S ∗ = (P ∗,L ∗) which consists of the points ofS along with
the ideal points and the lines ofS which are extended by
those parallel classes to which belong. This structureS ∗

is calledsemiextensionof S . S is calledprojectively ex-
tended linear spaceif S ∗ is a projective plane.

The cardinality ofP (resp. L ) will be denoted byv
(resp. b). The degreeof a point p is the numberb(p)
of lines on which it lies. The integern, wheren+ 1 =
max{b(p) : p∈ P }, is called the order of the space. The
sizeor degree v(l) (also denoted by|l |) of a line l is the
number of points it contains. Ak-line is a line of sizek.
The difference betweenn+1 and the number of points on
l is called adeficiencyof l denotedd(l) for any linel . Two
lines l andl ′ areparallel (respectivelydisjoint ) if l = l ′ or
l ∩ l ′ = φ (respectively ifl 6= l ′ andl ∩ l ′ = φ ).
A parallel classin the linear space(P ,L ) is a subset of
L with the property that each point ofP is on a unique
element of this subset.
A finite projective planeof ordern, n≥ 2, is a non-trivial
(n+1)-regular linear space in which all lines have the same
sizen+1.
A finite affine planeof order n, n ≥ 2, is a non-trivial
(n+1)-regular linear space in which all lines have the same
sizen.
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In this paper, for any two disjoint linesl and l ′ which
have size less thann in a finite linear space we will use
m(l , l ′) andmn (l , l ′) to denote respectively the total num-
ber of lines andn−lines meetingl or l ′ without l andl ′ are
themselves included.

µ=min{n+1−v(l)| l ∈ L , v(l) � n} and

λ =max{n+1−v(l)| l ∈ L , v(l) � n}.

Mn =max{mn(l , l ′) | l ′, l ∈ L , v(l) � n, v(l ′) � n}.

The positive integersµ andλ will denote the minimum and
maximum ofdeficienciesof lines ofS which have size less
thann, respectively.

Lemma 1.1 [5, Lemma 3.3] Suppose thatS = (P ,L ) is a
non-trivial (n+1)-regular linear space with n2+n+1 lines
and n2 +n+1−s points.

(i) If bn is the number of lines of size n, bn ≥ s(n+2−s).
In particular, n2 +1≤ v≤ n2 +n−1,bn ≥ 2n.

(ii) If there is no line of size n,

∑
l∈L

d(l)(d(l)−2) = s(s−2−n).

2 Main Results

Lemma 2.1 If S = (P ,L ) is a non-trivial (n+1)-regular
linear space with n2 + n+ 1 lines which contains at least
one n-line, n≥ 2, the semiextension ofS is linear space.

Proof. Let S ∗ = (P ∗,L ) be a semiextension ofS . Fix an
n−line l . Then the number of lines missingl is n. Hence
eachn−line induces a parallel class ofn+1 lines. SinceS
is a (n+ 1)-regular linear space which contains sufficient
number ofn-lines,S contains at least one parallel class of
lines.

It is clear that two old points (points ofP ) or an old and a
new point are on a unique line ofL .

Let x andy be new points. We must show that they deter-
mine a unique line ofL . Let lx and ly be n−lines which
determine the parallel classes corresponding tox andy. If
lx andly do not meet, thenx = y which is a contradiction.
Solx andly meet. Each point ofly is on a unique line of the
parallel class determined bylx. This leaves precisely one
line of the parallel class parallel to bothlx and ly. There-
foreS ∗ is a linear space.

Lemma 2.2 Let S be a non-trivial (n+1)-regular linear
space with n2 + n+ 1 lines in which all lines in semiex-
tension ofS meet. Then semiextension ofS is a projective
plane of order n, n≥ 2.

Proof. Let S ∗ be semiextension ofS . Then each line inS ∗

containsn+1 points since all lines inS ∗ meet. Therefore
S ∗ is a linear space withn2 + n+ 1 lines andn2 + n+ 1
points. HenceS ∗ is a projective plane of ordern.

Lemma 2.3 Let S be a non-trivial (n+1)-regular linear
space with b= n2 + n+ 1 lines and v(l) = n+ 1− d(l)
for every line l ofS . Then

(i) The number of lines parallel to a line l is d(l).n

(ii) If l and l ′ intersect, the number of lines parallel to
two lines l and l′ is d(l).d(l ′), and it is (n− 1) +

(d(l)−1)(d(l ′)−1), if l and l′ are parallel.

(iii) If M is the set of lines parallel to a given line l,

(v−v(l)).d(l) = ∑
k∈M

v(k)

Proof. It is trivial.

Lemma 2.4 Let S = (P ,L ) be an(n+ 1)-regular linear
space with b= n2 + n+ 1 lines and v points having the
property each point on an n+ 1− d(l)-line, d(l) ≥ 0, is
on at most b−v−d(l) lines of size n.

(i) If b −v≤ 2µ−1, Mn ≤ 2(n+1−µ)(b−v−µ).

(ii) If b −v≥ 2λ−1, Mn ≤ (n+1−µ)(b−v−1).

Proof. Suppose thatl is an n+ 1− d(l)-line and l ′ is
a n+ 1− d(l ′)-line, d(l) ≤ d(l ′). By all the assumptions
of lemma, there are at most(n+ 1− d(l))(b− v− d(l))
lines of sizen and (n+ 1− d(l ′))(b− v− d(l ′)) lines of
size n meetingl and l ′, respectively. Let the number of
n-lines which are (meetingl and missingl ′), (meeting
l ′ and missingl ) or (meetingl and l ′) be x,y or z, re-
spectively. Thenmn(l , l

′
) = x+ y+ z. On the otherhand

y+z≤ (n+1−d(l ′))(b−v−d(l
′
)), sinced(l) ≤ d(l

′
).

If b−v≤2µ−1,b−v−d(l)≤ d(l
′
)−1 andb−v−d(l

′
)≤

d(l)− 1 sinced(l) ≤ d(l
′
) and 2µ− 1≤ d(l)+ d(l

′
)− 1.

Hence

x ≤ (n+1−d(l))(b−v−d(l))

≤ (n+1−µ)(b−v−µ)

y+z ≤ (n+1−d(l ′))(b−v−d(l ′))

≤ (n+1−µ)(b−v−µ).
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Thus

Mn ≤ 2(n+1−µ)(b−v−µ).

If b− v≥ 2λ−1, b− v−d(l) ≥ d(l ′)−1, b− v−d(l) ≥
d(l ′)−1, sinced(l) ≤ d(l ′) and 2λ−1≥ d(l)+d(l ′)−1.

Therefore,

(n+1−d(l))(b−v−d(l)) ≥ (n+1−d(l))(d(l ′)−1)

and

(n+1−d(l ′))(b−v−d(l ′) ≥ (n+1−d(l ′))(d(l)−1).

Hence

x ≤ (n+1−d(l))(d(l ′)−1)

y+z ≤ (n+1−d(l ′))(b−v−d(l ′))

≤ (n+1−d(l))(b−v−d(l ′)).

Therefore,Mn ≤ (n+1−µ)(b−v−1), since

mn(l , l
′

) ≤ (n+1−d(l))(b−v−1) andµ≤ d(l) ≤ d(l ′) ≤ λ.

Theorem 2.1 Let S be a non-trivial(n+ 1)-regular lin-
ear space with n2 + n+ 1 lines and v points. Let the total
number of n-lines inS be bn. If bn > Mn, S is projectively
extended space of order n.

Proof. Let S ∗ be semiextension ofS . By Lemma 2.1,S ∗ is
a linear space. It follows from our method of construction
that each point ofS ∗ is on n+ 1 lines. Finally we prove
that any two lines ofS ∗ always meet. Letl andl ′ be lines
of S ∗ which don’t meet inS . To prove that they meet in
S ∗, it sufficies to find ann-line parallel to both.

If either l or l ′ is ann-line, we are done (and clearly neither
can be ann+1-line)

Suppose thatl is ann+ 1−d(l)-line andl ′ is ann+ 1−
d(l ′)-line, 2≤ d(l) ≤ d(l ′). Sincebn > Mn, and there is
at mostMn lines of sizen which intersect at least one of
two parallel linesl and l

′
, there is at least anothern-line.

Thusl andl ′ meet inS ∗. Therefore, by Lemma 2.2,S ∗ is
a projective plane of ordern.

Theorem 2.2 Let S = (P ,L ) be an(n+1)-regular linear
space with b= n2 + n+ 1 lines and v points having the
property each point on an n+1−d(l)-line, d(l)≥ 0, is on
at most b−v−d(l) lines of size n. If bn > 2(n+1−µ)(b−
v−µ), S is projectively extended space of order n.

Proof. By Lemma 2.1, semiextension ofS is linear space.
Fix an n-line l . Then the number of lines missingl is n.

Hence eachn-line induces a parallel class ofn+ 1 lines.
Let S ∗ be a semiextension ofS . We must show that any
two lines inS ∗ intersect. Letl andl ′ be lines ofS ∗ which
don’t meet inS . To prove that they meet inS ∗, it suffices
to find ann-lines parallel to both.

If either l or l ′ is ann-line, we are done. (and clearly nei-
ther can be ann+1-line).

Suppose thatl is an+1−d(l)-line andl ′ is an+1−d(l ′)-
line, 2 ≤ d(l) ≤ d(l ′). By all the assumptions of the-
orem, there are at most(n + 1− d(l))(b− v− d(l)) n-
lines and(n + 1− d(l ′))(b− v− d(l ′)) n-lines meeting
l and l ′, respectively. Let the number ofn-lines which
are (meetingl and missingl ′), (meetingl ′ and missing
l ) or (meetingl and l ′) be x,y or z, respectively. Then
y+z≤ (n+1−d(l ′))(b−v−d(l

′
)), since 2≤ d(l)≤d(l

′
).

Hence

x ≤ (n+1−d(l))(b−v−d(l))

≤ (n+1−µ)(b−v−µ)

y+z ≤ (n+1−d(l ′))(b−v−d(l ′))

≤ (n+1−µ)(b−v−µ).

Therefore, the number ofn-lines which intersect at least
one of linesl and l ′, the number ofn-lines is at most
2(n+1−µ)(b−v−µ) and there is at least onen-line miss-
ing l andl ′ . Thusl andl ′ meet inS ∗. So by the Lemma 2.2,
S ∗ is a projective plane of ordern.

Corollary 2.1 Let S = (P ,L ) be an(n+ 1)-regular lin-
ear space with b= n2+n+1 lines and v points having the
property each point on an n+1−d(l)- line, d(l)≥ 0, is on
at most b−v−d(l) lines of size n.
If bn ≥ 1 and n≥ (b− v−µ)(b− v−1), S is projectively
extended space of order n

Proof. Let bn ≥ 1 andn ≥ (b− v− µ)(b− v− 1). By
Lemma 1.1,bn > (b−v)(n+2− (b−v)).
Sincen≥ (b−v−µ)(b−v−1),

(b−v)(n+2− (b−v))> 2(n+1−µ)(b−v−µ).

Therefore, by the Theorem 2.2,S is projectively extended
space of ordern.
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Theorem 2.3 Let S = (P ,L ) be an(n+1)-regular linear
space with b= n2+n+1 lines and at most n2+n+2−2λ
points having the property each point on an n+ 1−d(l)-
line, d(l) ≥ 0, is on at most b−v−d(l) lines of size n.
If bn > (n+1−µ)(b−v−1) thenS is projectively extended
space of order n.

Proof. By Lemma 2.1, the semiextension ofS is linear
space. Fix ann-line l . Then the number of lines missing
l is n. Hence eachn-line induces a parallel class ofn+ 1
lines. LetS ∗ be a semiextension ofS . We must show that
all lines inS ∗ intersect. Letl andl ′ be lines which do not
meet inS . To prove that they meet inS ∗, it suffices to find
ann-line parallel to both inS .

If either l or l ′ is ann-line, we are done (and clearly neither
can be ann+1-line).

Suppose thatl is ann+ 1−d(l)-line andl ′ is ann+ 1−
d(l ′)-line, 2≤ d(l) ≤ d(l ′). By all the assumptions of this
theorem, there are at most(n+ 1−d(l))(b− v−d(l)) n-
lines and(n+ 1− d(l ′))(b− v− d(l ′)) n-lines meetingl
andl ′, respectively. Hence,

n+1−d(l ′)≤ n+1−d(l) andb−v−d(l ′)≤ b−v−d(l).

(n+1−d(l))(b−v−d(l)) ≥ (n+1−d(l ′))(b−v−d(l ′))

b−v≥ 2λ−1, sincev≤ n2+n+2−2λ andb= n2+n+1.

Therefore, the number ofn-lines meetingl or l ′ is at most
(n+1−µ)(b−v−1), by Lemma 2.4(ii). Thus all lines in
S ∗ intersect, sinceS contains at least(n+ 1− µ)(b− v−
1)+ 1 lines of sizen. Hence,S ∗ is a projective plane of
ordern, by the Lemma 2.2

References
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