
KoG•10–2006 G. Wallner: Geometry of Real Time Shadows

Professional paper

Accepted 4. 12. 2006.

GÜNTER WALLNER

Geometry of Real Time Shadows

Geometry of Real Time Shadows

ABSTRACT

Shadows provide important visual hints about the spatial
relationship between objects. Shadow volumes are one
way to generate sophisticated shadows for use in real time
environments. This paper focuses on the geometric as-
pects which are involved in the creation of the shadow
volume. Speed up techniques like shaders and dual space
approaches for silhouette determination are discussed. Fi-
nally the application of the described methods in a software
for shadow profile calculation is explained.

Key words: Shadow volumes, Dual space, Silhouette
determination, Shader, Real time

MSC 2000: 51-04

Geometrija sjenâ u realnom vremenu

SAŽETAK

Sjene pružaju važne vizualne informacije o prostornom
odnosu medu objektima. Tijelo sjene je jedan način kako
generirati profinjene sjene za prkaze u realnom vremenu.
U ovom članku usredotočilo se na geometrijski aspekt
uključen u stvaranje tijela sjene. Razmatraju se brze i
efikasne tehnike za odred-ivanje rastavnice preko dva pris-
tupa: dualnog prostora i programa za sjenčanje (shadera).
Na kraju je prikazana primjena opisanih metoda u softveru
za odred-ivanje oblika sjene.

Ključne riječi: tijelo sjene, dualni prostor, odred-ivanje ras-
tavnice, program za sjenčanje, realno vrijeme

1 Introduction

Shadows are an important part in computer graphics be-
cause they can reveal information that otherwise would not
be ascertainable. Foremost, they reveal the spatial relation-
ship between objects in the scene. They also disclose new
angles on an object that otherwise might not be visible and
they can also indicate the presence of off-screen objects.
These and other visual functions of shadows in computer
graphics are described by Birn in [5].

Shadow volumes were first proposed by Crow in 1977 [8].
With the advent of modern day computer graphic cards,
shadow volumes are now possible in real time. Heidmann
[14] adapted Crow’s algorithm to hardware acceleration.
His method is now known as the z-pass method (because
the stencil buffer is incremented/decrementedwhen a poly-
gon passes the depth test). However, the z-pass method
does not work correctly if the near clipping plane inter-
sects the shadow volume. Carmack [6] solved the prob-
lem by using z-fail testing (the stencil buffer is increment-
ed/decremented when a polygon fails the depth test). The
z-fail method still yields incorrect results if the shadow vol-
ume is intersected by the far clipping plane. This problem
can be circumvented by moving the far clipping plane to
infinity, as proposed by [9].

Shadow maps (introduced by [26]) are image based alter-
natives to shadow volumes (which operate on the object

geometry). In the meantime several different shadow map
algorithms have been developed. Both methods have their
benefits and drawbacks. For a comparison of the pros and
cons of both methods see for example [25].

”Classic” shadow volume algorithms create hard shadows.
A shadow region is divided into two parts: the region
which is fully in shadow (umbra) and the region which is
partially in shadow (penumbra). Hard shadows only con-
sist of the umbra area. Soft shadow volume algorithms
have been developed among others by Ulf Assarsson and
Tomas Akenine-Möller [21, 1].

2 Assumptions and Definitions

The shadow volume algorithm requires that the shadow
casting objects must be a 2-manifold polygon mesh and
free of non-planar polygons. 2-manifold means that every
edge of the mesh must be shared exactly by two polygons.
It is also useful to restrict oneself to triangular meshes, be-
cause modern graphics hardware is optimized for triangle
rendering.

Furthermore, all triangles must have the same winding
order. For the following discussion a counter clockwise
winding order and outward pointing normals are assumed.

A silhouette edge is an edge adjacent to one front-facing
and one back-facing polygon. A polygon is called front-

37

KoG•10–2006 G. Wallner: Geometry of Real Time Shadows

Figure 1:The z-pass method. The values at the end of the
rays represent the values left in the stencil buffer. Note
that the stencil value of the leftmost ray is wrong due to
the clipping of the shadow volume of the sphere at the
near clipping plane.

facing with respect to the light if the dot-product of its nor-
mal and the vector from the light position and a point on
the polygon is positive. Respectively a polygon is called
back-facing with respect to the light if the dot-product is
negative.

A border edge is an edge which is only adjacent to one
face (which implies that the mesh is open). It should be
noted that we can handle open meshes if we treat border
edges as part of the silhouette. The silhouette is the set of
all silhouette edges (and border edges).

3 Overview

I will first give an overview of the z-pass algorithm and
then point out the differences with respect to the z-fail al-
gorithm. The basic concept [...] is to use the stencil buffer
as a masking mechanism to prevent pixels in shadow from
being drawn during the render pass for a particular light
source [17]. First of all the stencil buffer is initialized with
zero and the z-buffer is initialized with the depth values
of the visible objects during a first rendering pass. In this
pass only light-independent attributes are considered (e.g.
ambient light). Then the shadow volume is rendered with
writes to the color buffer and depth buffer disabled. This
is usually done in two steps. First, the front faces of the
shadow volume (with respect to the camera position) are
rendered and the stencil buffer is incremented each time
the fragment passes the depth test. Second, the back faces
are rendered. This time decrementing the value in the sten-
cil buffer when a fragment passes the depth test.

As shown in figure 1, this leaves non-zero values in the
stencil buffer wherever the shadow volume intersects a

Figure 2:The z-fail method. The values at the intersection
of the ray and the near clipping plane represent the values
left in the stencil buffer. This time the stencil value for the
ray passing through the sphere is correct.

visible object. Figure 1 in addition shows why this ap-
proach fails if the shadow volume intersects the near clip-
ping plane.

As noted by [3] the front faces must be rendered before
the back facing polygons to avoid shadow counting over-
flow. That is, because under OpenGL the result of the
increment and decrement functions is clamped to lie be-
tween 0 and the maximum unsigned integer value (2n

−1
if the stencil buffer holdsn bits) [22]. However, render-
ing the shadow volume geometry twice is a suboptimal
solution. The OpenGL extension EXTstencil two side
[11] allows separate stencil states for front faces and back
faces to be specified simultaneously. Therefore front faces
as well as back faces can be rendered at once. Though
this time it is not guaranteed that the front facing poly-
gons will be rendered before the back faces. Consequently
the feasibility exists that the stencil value for a particular
pixel is decremented before it is incremented. We can ac-
count for that option by using another OpenGL extension,
namely EXTstencilwrap [12], which allows stencil val-
ues to wrap when they exceed the maximum and minimum
stencil values.

Several authors [4, 3, 6] proposed methods to cap the
shadow volume at the near plane. However, these are com-
putationally expensive and they have robustness problems.

Carmack [6] and others therefore suggested the z-fail algo-
rithm. Instead of counting the shadow faces in front of a
particular pixel, the shadow faces behind are counted. This
time the near clipping plane problem is avoided because
shadow volume geometry between the eye and the pixel
is nonrelevant. Figure 2 shows the z-fail approach. As
already mentioned in the introduction the z-fail approach

38

KoG•10–2006 G. Wallner: Geometry of Real Time Shadows

moves the near clipping plane problem to the far plane,
which can be prohibited by using an infinite projection ma-
trix (see section 6).

4 Silhouette Detection

To calculate the shadow volume, we first have to determine
the silhouette of the shadow casting object. The so-called
brute force method for detecting silhouette edges is to loop
through all edges and check the dot-product of the adjacent
triangles. Since silhouette detection is one of the two major
bottlenecks (beside fill rate consumption), as pointed out
by [16], it is appropriate to use more sophisticated meth-
ods. [2] developed a dual space approach for silhouette
extraction in 3D and [15] used a similar method but moved
to four dimensions. Most recently [24] presented a paper
about silhouette extraction in Hough space.

Because [15] are concerned with non photorealastic ren-
dering, they determine the silhouette with respect to the
viewpoint. However, in case of shadows the silhouette de-
pends on the light position. Therefore the viewpoint must
be substituted with the light position. The algorithm in
[15] is based on the geometric concept of duality in a pro-
jective space and the following characterization of the sil-
houette: IfL is the homogeneous light position, the set of
silhouette points determines a general coneC (with apex
L) tangent to the differentiable surfaceM. If L ′ is the im-
age plane ofL when applying the duality map, the image
C′ of C is the intersection of the planeL ′ with the dual
surfaceM′. C′ can be identified with the silhouette set of
surfaceM. A point v = (vx,vy,vz,1) of M belongs to the
silhouette set if(a− v) ·n = 0, wheren = (nx,ny,nz,0) is
the unit normal vector to M atv anda = (ax,ay,az,1) is
a point on the tangent plane atv. The tangent plane atv
is mapped onto a dual pointv′ = (vx,vy,vz,−v ·n). There-
fore the silhouette set ofM is characterized by the equation
L ·v′ = (L −v) ·n = 0. Consequently, the problem of find-
ing the silhouette of a differentiable surface is reduced to
the problem of intersecting a plane with a surface.

Since I am concerned with polyhedral surfaces the prob-
lem can be reformulated in a way as described by [15].
The dual surface is built by mapping each vertexv of the
mesh onto a homogeneous pointv′ = (vx,vy,vz,−(v ·n)).
The dual surface has the same connectivity but different
vertex positions. A dual edgee′ of an edgee= (v1,v2) is
a tuple(v′1,v

′

2). An edgee belongs to the set of silhouette
edges ifL · v′1 >= 0 andL · v′2 < 0 or vice versa. Each
v′ is then normalized (using the Euclidean norm) to make
sure that each point of the dual surface lies inside the unit
hypercube. This allows us to store each dual edge in a 4D
variant of an octtree (I will call it hextree in the further

discussion) as pointed out by [7]. At the highest level this
hextree ranges from(−1,−1,−1,−1) to (1,1,1,1). The
space can be repeatedly divided into 16 smaller hextrees
until a small enough partition is reached. A dual edgee′ is
then inserted into the smallest subcube which enclosesv′1
as well asv′2.

Instead of using two bounding boxes per subcube to de-
termine if the dual edges have to be verified [7] I use a
different approach. For testing if an AABB1 and a plane
intersect, the box diagonal which is most aligned with the
normal of the plane has to be found first. Second the di-
agonals vertices (vmin andvmax) are inserted into the plane
equation. If the signs of the results differ or at least one
of them is zero, then the plane intersects the box [20].
[20] also points out that the two vertices can be found di-
rectly. The signs of the components of the plane normal
are used as a bit mask. If this mask is interpreted as a num-
ber it can be used as index to an array of AABB vertices.
This approach can easily be extended to four dimensions.
Each of the 16 vertices of a 4D cube is stored in an ar-
ray so that the minimum vertex is located at index 0 and
the maximum vertex at position 15. Instead of the plane
normal we interpret the signs of the components ofL as
a bit mask. The indexi of vmin can then be calculated as
i = 8 ·sgn(Lx)+4 ·sgn(Ly)+2 ·sgn(Lz)+sgn(Lh) where

sgn(x) =

{

0 x >= 0

1 otherwise.

The vmax vertex can be found by inverting the bit mask.
The dual edges of a subcube must only be tested ifL ·

vmin >= 0 andL ·vmax < 0 or vice versa.

Building the dual surface and inserting the dual edges into
the hextree can be done once in a preprocessing step as
long as the connectivity of the object does not change. Fur-
thermore silhouette detection must only be performed if
the object position changes with respect to the light posi-
tion.

5 Shadow Volume Construction

Once the set of silhouette edges is determined the edges
must be extruded to form the shadow volume. As described
by [17], no matter what finite distance silhouette edges are
extruded, it is still possible that the shadow volume does
not reach far enough to cast a shadow on every object in
the scene that should intersect the volume. This problem
worsens when the light source is very near to the shadow
casting object, but it can be circumvented by using an infi-
nite projection matrix. How this matrix can be obtained is
described in section 6.

1AABB stands for Axis Aligned Bounding Box. Assuming an AABB is valid in our case because the hextree is axis aligned.

39

KoG•10–2006 G. Wallner: Geometry of Real Time Shadows

Figure 3: An Object O is casting a shadow onto the near
clip plane since it partially intersects the near clip volume
(shaded)

To make the z-fail algorithm work correctly, the shadow
volume must be a closed volume where all polygons must
have a consistent winding order. A complete shadow vol-
ume consists of: (1) the front cap (consisting of all front-
facing polygons), (2) the extruded silhouette edges and (3)
the back cap. It is notable that the extrusion of the ge-
ometry depends on the light source. For a point light the
vertices of the silhouette edge must be extruded to infinity
along the vector from the location of the point light to the
vertex (see figure 4). Ifv = (vx,vy,vz,1) is the position of
the vertex to be extruded andL is the position of the point
light then the extruded vertexve = (vx − Lx,vy − Ly,vz−

Lz,0).

For a directional light all extruded points converge to
a single point in infinity (see figure 4) at position
(−Lx,−Ly,−Lz,0). This implies that the back cap is not
necessary for directional light sources. The back cap con-
ventionally consisted of all back-facing polygons projected
away from the light [9, 17]. But since the back cap is at in-
finity the shape does not matter [19]. The only constrain
which remains is that the back cap must actually close the
volume. This can be achieved with a simple triangle fan
constructed from the extruded silhouette edges [19, 16].

The z-pass algorithm doesn’t use caps, therefore the incor-
rect results if the shadow volume intersects the near clip
plane (see [9] for details) or the viewpoint is inside the
volume. From this point it is clear that the z-fail method is

computationally more expensive and should only be used
when necessary. To determine whether the shadow volume
is clipped by the near plane the near clip volume has to be
constructed. The near clip volume is bound by the planes
which connect the near rectangle to the light position, as
shown in figure 3. The near rectangle is the area cut out of
the near plane by the four side planes of the view frustum.
Only an object which is inside this near clip volume can
cast a shadow onto the near clipping plane. For a compre-
hensive description see [17].

Silhouette edge extrusion can now be done on graphics
hardware to remove the burden from the CPU. The follow-
ing Cg vertex shader extrudes a vertexv = (vx,vy,vz,vw) if
vw = 0 otherwise the position is just passed through.

f l o a t 4 l i g h t T o V e r t e x = IN . p o s i t i o n−
l i g h t P o s ;

f l o a t m = 1 − IN . p o s i t i o n .w;
f l o a t 4 outx = IN . p o s i t i o n∗(1−m) +

l i g h t T o V e r t e x∗m;
outx .w = IN . p o s i t i o n .w;

/ / t r a n s f o r m p o s i t i o n t o homogeneous c l i p
space

OUT. HPOS = mul (ModelViewProj , outx) ;

IN. position is the vertex coordinate andlightPos is the po-
sition of the point light. If shaders are used, one has
to take care of transforming the vertex position into ho-
mogenous clip space, therefore the multiplication with the
modelview-projection matrix. To make this approach work
correctly, each vertex of the silhouette must be passed
twice to the shader. Once withvw = 1 and once with
vw = 0. The extrusion for a directional light looks simi-
lar.

6 Infinite Projection Matrix

The OpenGL projection matrix is defined as [22]:

P =

∣

∣

∣

∣

∣

∣

∣

∣

∣

2·n
r−l 0 r+l

r−l 0
0 2·n

t−b
t+b
t−b 0

0 0 −(f+n)
f−n

−2· f ·n
f−n

0 0 −1 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

In this matrix f is the distance from the viewer to the far
clip plane, n the distance to the near clip plane and r and l
are the respective distances to the left and right clip plane.
t and b are the distances to the top and bottom clip plane.

40

KoG•10–2006 G. Wallner: Geometry of Real Time Shadows

Figure 4:Silhouette extrusion for a point light (left) and for a directional light (right)

We can obtain the infinite projection matrix by calculating
P∞ = lim

f→∞
P which yields

P∞ =

∣

∣

∣

∣

∣

∣

∣

∣

2·n
r−l 0 r+l

r−l 0
0 2·n

t−b
t+b
t−b 0

0 0 −1 −2 ·n
0 0 −1 0

∣

∣

∣

∣

∣

∣

∣

∣

An infinite projection matrix reduces the depth buffer pre-
cision only marginally as pointed out by [9]. However,
if you are concerned about this loss you can use Nvidia’s
NV depthclamp [23] extension. If depth clamping is en-
abled, the near and far clipping plane are disabled for ras-
terizating geometry primitives.

7 Rendering

Here I present the necessary steps to render shadow vol-
umes with OpenGL. First we render the scene with enabled
depth writes, backface culling and with ambient lighting
only (light independent attributes). This guarantees that
the depth buffer is initialized with the correct depth values.
Afterwards we disable writes to the depth buffer and turn
off ambient lighting.

g lEnab le (GLLIGHTING) ;
g l L i gh tMode l f v (GL LIGHT MODEL AMBIENT ,

ambient) ;
g lEnab le (GLDEPTH TEST) ;
g lDepthFunc (GLLESS) ;
g lEnab le (GLCULL FACE) ;
g l C u l l F a c e (GLBACK) ;

drawScene () ;

glDepthMask (GLFALSE) ;
g l L i gh tMode l f v (GL LIGHT MODEL AMBIENT ,

ze ro) ;

The stencil mask has to be calculated separately for each
light source.

f o r each l i g h t s o u r c e
{

First we clean the stencil buffer, configure the stencil test
so that it always passes and disable writes to the color
buffer. We will take advantage of two side stencil testing so
that we only have to render the shadow volume of each oc-
cluder once. Therefore the stencil operation is set to incre-
ment and decrement for front- and back-facing polygons
respectively – if the depth test fails. Culling is also turned
off because front as well as back faces must be rendered at
the same time.

g l C l e a r (GL STENCIL BUFFER BIT) ;
g lEnab le (GLSTENCIL TEST) ;
g l S t e n c i l F u n c (GLALWAYS, 0 , ˜ 0) ;
g l S t e n c i l M a s k (˜ 0) ;

g lColorMask (GLFALSE , GL FALSE , GL FALSE ,
GL FALSE) ;

g lAc t i veS tenc i l F aceEXT (GLBACK) ;
g l S t e n c i l O p (GLKEEP , GL INCR WRAP EXT ,

GL KEEP) ;
g lAc t i veS tenc i l F aceEXT (GLFRONT) ;
g l S t e n c i l O p (GLKEEP , GLDECR WRAP EXT,

GL KEEP) ;

g l D i s a b l e (GLCULL FACE) ;
g lEnab le (GLSTENCIL TEST TWO SIDE EXT) ;

Now the shadow volume of each occluder in the scene is
rendered. Afterwards culling is turned on and the stencil
test is disabled. At that time the stencil buffer holds the
correct information about which pixels are in shadow and
which aren’t.

41

KoG•10–2006 G. Wallner: Geometry of Real Time Shadows

f o r each o c c l u d e r
{

renderShadowVolume (o c c l u d e r) ;
}

g lEnab le (GLCULL FACE) ;
g l D i s a b l e (GLSTENCIL TEST TWO SIDE EXT) ;

The whole scene is now rendered again. This time the cur-
rent light is enabled and configured (all light dependent
attributes). Stencil testing is configured so that only pixels
with a zero stencil value are rendered. Equal depth testing
is used so that only visible fragments are updated. Since
this pass adds to the ambient scene already in the color
buffer, additive blending must be enabled as well as writes
to the color buffer. After rendering the scene, blending is
disabled and the depth function is restored to less depth
testing.

g lEnab le (l i g h t) ;
c o n f i g u r e L i g h t (l i g h t) ;

g lEnab le (GLBLEND) ;
g lB lendFunc (GLONE, GL ONE) ;
glColorMask (GLTRUE , GL TRUE , GL TRUE ,

GL TRUE) ;

g l S t e n c i l F u n c (GLEQUAL, 0 , ˜ 0) ;
g l S t e n c i l O p (GLKEEP , GL KEEP , GL KEEP) ;
g lDepthFunc (GLEQUAL) ;

rende rS cene () ;

g l D i s a b l e (GLBLEND) ;
g lDepthFunc (GLLESS) ;

}

After the above steps have been carried out for all lights,
stencil testing is disabled and writes to the depth buffer are
enabled.

g l D i s a b l e (GLSTENCIL TEST) ;
glDepthMask (GLTRUE) ;

8 Application: Shadow Profiles

I have succesfully applied shadow volumes in an applica-
tion for calculating shadow profiles in real time. A shadow
profile shows the cast shadow of an object over a specific
time period. This is, for example, of concern for architects
to find out how long the surroundings are obscured by a
building. After providing the required information needed
for computing the position of the sun2 (latitude, date, time)
and the time period, the shadow profile is calculated.

Scene Number of trianglesa
∼time [ms]

Eiffel Tower 11353 (11155) 4.584
Industry Area 13615 (13585) 7.299

Uniqua Building 182038 (147296) 44.486
Uniqua Building 182038 (182038) 58.666

Table 1: Performance with brute force silhouette detection
aFirst number: total triangles in the scene. Second number: triangles of

shadow casting objects

Scene Number of triangles ∼time [ms]
Eiffel Tower 11353 (11155) 4.236
Industry Area 13615 (13585) 5.799

Uniqua Building 182038 (147296) 39.331
Uniqua Building 182038 (182038) 48.872

Table 2: Performance with dual space silhouette detection

The application can detect the silhouette either by brute
force or with the above described dual space approach. If
the graphics card supports vertex and fragment shaders, sil-
houette extrusion and per pixel lighting is performed on the
GPU. Otherwise the CPU handles the extrusion and stan-
dard OpenGL lighting is used. Double sided stencil testing
is performed if EXTstencil two side is supported. The z-
fail algorithm is only applied if necessary (see section 3).

Figures 5 to 7 show some sample scenes. Table 1 shows the
time needed for brute force silhouette detection for each
scene and table 2 for dual space silhouette detection, re-
spectively. All measurements were taken on a Pentium 4
3.4Ghz processor with 1GB memory. For each scene a
hextree with a fixed depth of four was chosen for the dual
space approach.

9 Future Work

The results show that silhouette detection can greatly im-
prove performance. As future work it would be interest-
ing to see how Hough space silhouette finding [24] can
further speed up the process. At this time no techniques
to reduce fill rate consumption are implemented. Lengyel
[17] describes how OpenGLs scissor rectangle support can
be used to cut down the fill rate penalty for rendering the
shadow volumes. That is because the hardware does not
generate fragments outside the scissor rectangle. The scis-
sor rectangle can be applied on a per light basis or per ge-
ometry basis, as pointed out by [18]. [10] suggest a depth
bounds test for stencil writes. This idea is based on the ob-
servation that some depth values can never be in shadow, so
incrementing and decrementing the stencil buffer is need-
less.

2See [13] for a description of the calculation

42

KoG•10–2006 G. Wallner: Geometry of Real Time Shadows

Figure 5:left: Casted shadows of an industry area located at a latitude of 45.2◦ north on September 18th at 3pm. middle:
Visualization of the shadow volumes (yellow). right: The shadow profile of the scene over a time period of three hours
(12pm until 3pm in 30 minutes time steps).

Figure 6:left: Shadow of the Eiffel Tower in Paris (latitude of 48.8◦ north) on September 18th at 2pm. middle: Visualiza-
tion of the shadow volume (yellow) and the silhouette edges (pink). right: Shadow profile over a time period of four hours
(10am until 2pm in 30 minutes intervals).

Figure 7:Proposal for the Uniqua building in Vienna (48.2◦ north) by Hans Hollein. A color was assigned to each structural
component. left: Only the facade (yellow) and the concrete (green) is casting a shadow. middle: The complete building
is casting a shadow. right: The shadow profile over a time period of eight hours (9am until 5pm in 1 hour intervals) on
September 18th.

43

KoG•10–2006 G. Wallner: Geometry of Real Time Shadows

10 Conclusions

In this paper I have presented the necessary steps for a ro-
bust implementation of stencil shadow volumes. Stencil
shadow volumes suffer mainly from two bottlenecks: (a)
fill rate and (b) silhouette detection. The latter was dis-
cussed in section 4. Modern graphics hardware can take
over computations which formerly had to be performed on
the CPU, e.g. silhouette extraction. Code snippets showed
how stencil shadows can be implemented with OpenGL.
Extensions to OpenGL provide further ways to improve
performance.

References

[1] ULF ASSARSSON AND TOMAS AKENINE-
M ÖLLER, A Geometry-based Soft Shadow Volume
Algorithm using Graphics Hardware, Siggraph
Proceedings22, 511–520, 2003, available online:
http://www.cs.lth.se/home/Tomas_Akenine_

Moller/pubs/soft_sig2003.pdf

[2] G. BAREQUET AND C. A. DUNCAN AND M. T.
GOODRICH AND S. KUMAR AND M. POP, Ef-
ficient perspective-accurate silhouette computation,
Proceedings of the 15th annual symposium on Com-
putational geometry, 417–418, 1999

[3] HARLEN COSTA BATAGELO AND ILAIM COSTA

JUNIOR, Real-Time Shadow Generation using BSP
Trees and Stencil Buffers, XII Brazilian Symposium
on Computer Graphics and Image Processing, 93–
102, 1999

[4] JASON BESTIMT AND BRYANT FREITAG, Real-
Time Shadow Casting Using Shadow Volumes, 1999,
available online: http://www.gamasutra.com/

features/19991115/bestimt_freitag_01.htm

[5] JEREMY BIRN, Digital Lighting & Rendering, New
Riders, 2006

[6] JOHN CARMACK , E-Mail to private list, 2000, avail-
able online: http://developer.nvidia.com/

attach/6832

[7] JOHAN CLAES AND FABIAN DI FIORE AND GERT

VANSICHEM AND FRANK VAN REET, Fast 3D
Cartoon Rendering with Improved Quality by Ex-
ploiting Graphics Hardware, Proceedings of Image
and Vision Computing New Zealand (IVCNZ), 13–
18, 2001, available online:http://www.cs.utah.
edu/npr/papers/Claes_IVCNZ2001.pdf

[8] F.C. CROW, Shadow Algorithms for Computer
Graphics, Siggraph Proceedings11, 242–248, 1977

[9] CASS EVERITT AND MARK J. KILGARD, Prac-
tical and Robust Stenciled Shadow Volumes for
Hardware-Accelerated Rendering, 2002, avail-
able online: http://developer.nvidia.com/

object/robust_shadow_volumes.html

[10] CASS EVERITT AND MARK J. KILGARD, Op-
timized Stencil Shadow Volumes, Game Devel-
oper Conference Presentation, 2003, available on-
line: http://developer.nvidia.com/object/

GDC_2003_Presentations.html

[11] OPENGL EXTENSION REGISTRY,
EXT stencil two side, 2003, available online:
http://oss.sgi.com/projects/ogl-sample/

registry/EXT/stencil_two_side.txt

[12] OPENGL EXTENSION REGISTRY,
EXT stencilwrap, 2002, available online:
http://oss.sgi.com/projects/ogl-sample/

registry/EXT/stencil_wrap.txt

[13] GEORG GLAESER, Der mathematische
Werkzeugkasten, Elsevier, 2006

[14] TIM HEIDMANN , Real Shadows, Real Time, Silicon
Graphics Inc.18, 23–31, 1991

[15] AARON HERTZMANN AND DENIS ZORIN, Il-
lustrating smooth surfaces, Proceedings of the
27th annual conference on Computer graphics and
interactive techniques, 517–526, 2000, available
online: http://mrl.nyu.edu/publications/

illustrating-smooth/hertzmann-zorin.pdf

[16] HUN YEN KWOON, The Theory of Stencil Shadow
Volumes, available online:http://www.gamedev.
net/reference/articles/article1873.asp

[17] ERIC LENGYEL, The Mechanics of Robust
Stencil Shadows, 2002, available online:
http://www.gamasutra.com/features/

20021011/lengyel_01.htm

[18] ERIC LENGYEL, Advanced Stencil Shadow and
Penumbral Wedge Rendering, Game Developer Con-
ference Presentation, 2005, available online:http:

//www.terathon.com/gdc_lengyel.ppt

[19] MORGAN MCGUIRE AND JOHN F. HUGHES

AND KEVIN T. EGAN AND MARK J. KIL -
GARD AND CASS EVERITT, Fast, Practical
and Robust Shadows, 2003, available online:
http://developer.nvidia.com/object/fast_

shadow_volumes.html

[20] TOMAS M ÖLLER AND ERIC HAINES, Real-Time
Rendering, A K Peters, 1999

44

KoG•10–2006 G. Wallner: Geometry of Real Time Shadows

[21] TOMAS AKENINE-M ÖLLER AND ULF ASSARS-
SON, Approximate Soft Shadows on Arbitrary Sur-
faces using Penumbra Wedges, Proceedings of the
13th Eurographics workshop on Rendering, 297–
306, 2002, available online: http://www.ce.
chalmers.se/~uffe/softshadows_egrw.pdf

[22] JACKIE NEIDER AND TOM DAVIS AND MASON

WOO, OpenGL Programming Guide, Addison Wes-
ley, 1993

[23] OPENGL EXTENSION REGISTRY, NV depthclamp,
2003, available online: http://oss.sgi.com/
projects/ogl-sample/registry/NV/depth_

clamp.txt

[24] MATT OLSON AND HAO ZHANG, Silhou-
ette Extraction in Hough Space, Eurograph-
ics Proceedings 25, 2006, available online:
http://www.cs.sfu.ca/~haoz/pubs/06_

eg_hough.pdf#search=%22silhouette%

20extraction%20hough%20space%22

[25] ASHU REGE, Shadow Considerations, avail-
able online: http://download.nvidia.com/

developer/presentations/2004/6800_

Leagues/6800_Leagues_Shadows.pdf

[26] LANCE WILLIAMS , Casting Curved Shadows on
Curved Surfaces, Siggraph Proceedings12, 270–
274, 1978, available online:http://accad.osu.
edu/~waynec/history/PDFs/shadowmaps.pdf#

search=%22casting%20curved%20surfaces%22

Günter Wallner

email: gw@autoteles.org

Department of Geometry

University of Applied Arts Vienna

45

