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ABSTRACT

A face-based curvature estimation on triangle meshes is

presented in this paper. A flexible disk is laid on the mesh

around a given triangle. Such a bent disk is used as a

geodesic neighborhood of the face for approximating nor-

mal and principal curvatures. The radius of the disk is free

input data in the algorithm. Its influence on the curvature

values and the stability of estimated principal directions

are investigated in the examples.
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O zakrivljenostima na trokutnim mrežama

SAŽETAK

U članku je prikazana procjena zakrivljenosti na trokut-

nim mrežama, bazirana na stranicama. Gipki disk položen

je na mrežu oko danog trokuta. Takav prilagodljiv disk

koristi se kao geodetska okolina stranice za aproksimaciju

normalnih i glavnih zakrivljenosti. Polumjer diska je neza-

visni ulazni podatak u algoritmu. U primjerima se istražuje

njegov utjecaj na vrijednosti zakrivljenosti i na stabilnost

procijenjenih glavnih smjerova.

Ključne riječi: trokutna mreža, zakrivljenost

1 Introduction

Triangle meshes are the most frequently used surface rep-
resentations in many surface-oriented applications. Sur-
face curvature properties have been successfully employed
for solution of different practical problems, as smooth-
ing or simplifying meshes in modeling and manufacturing,
also for surface classification and 3D object recognition
in computer vision research, etc. Discrete counterparts of
continuous definitions of differential operators, curvature
values, geodesic curves and Dirichlet energy, etc. have
been given and derived for arbitrary triangle meshes in [3],
[10], [13] and [14].

Almost all methods for surface derivative and curvature es-
timations on meshes have been vertex connectivity based.
In these approaches a specified neighborhood of vertices
formed by adjacent vertices, edges and faces is used to ap-
proximate the surface normal, surface derivatives and cur-
vature values at a vertex. The algorithms use either analytic
methods based on surface fitting, or they work with dis-
crete differential operators. The crucial first step in these
algorithms is the computation of a vector at each vertex
that approximates the true normal vector at this point of the
surface represented by the mesh. This problem is equiv-

alent to the computation of the best tangent plane to the
mesh at a given vertex. Most methods compute a weighted
average of facet normals in a one-ring neighborhood of the
vertex.

N =

∑

ω jNj

mi
, j = 1. . .mi ,

wheremi is the number of edges emanating from the ver-
texvi , ω j = k ·Area(trianglej), k > 0 andArea(trianglej)

is either surface area or Voronoi-surface area or a mixed
surface area of the triangle{vi,v j ,v j+1} (Fig. 1).
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Figure 1: One-ring neighborhood of a vertex
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A number of proposals have been published for choosing
the weights or the neighborhood for determining the best
normal vector ([15], [11], [9]).

An other problem is to estimate normal curvatures, which
is equivalent to the definition of osculating circles produc-
ing a second-order approximation to those curvature values
([12], [19]).

A normal curvature estimation in a one-ring neighborhood
can be given simply by defining the osculating circle in
a normal plane through the verticesvi , v j and the normal
vectorN (Fig. 2).
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Figure 2: Osculating circle in a normal plane

The curvature of this circle is

κn(vi) ≈
2 < N,(v j −vi) >

|v j −vi|2
,

where<,> denotes the dot product.

Instead of circle in a normal plane, interpolating quadratic
polynomial curve is also used e.g. in [7]. The one-
ring neighborhood of a specified vertex is replaced by a
Voronoi or mixed surface area [10], it is extended in [7]
and geodesic neighborhoods are also used ([12], [16]) in
the computations. The selection of neighborhood size can
affect results significantly: small neighborhoods provide
better estimates for clean data, while increasing the neigh-
borhood size smoothes the estimates, leading to less sen-
sitivity to noise. Obviously, small errors in these approxi-
mations lead rapidly to unreliable, noisy curvature values.
Comparisons of five frequently used methods are given in
[5].

Analytic methods are also applied for curvature estima-
tions by fitting a surface to the mesh in the neighborhood
of the point of interest and evaluating its curvatures ([5],
[6], [19]). Principal curvatures and principal directions

can be determined on the base of Euler theorem ([11], [2],

[4]). Mean and Gauss curvature values can be computed

from the curvature tensor, i.e. from the Weingarten matrix

or from its symmetric extension by eigen-decomposition

([12], [18]). The Gauss-Bonnet theorem gives a direct

method for the computation of Gauss curvature. It has two

different discrete forms which provide good approxima-

tions for special triangulations of surfaces [20].

In this paper we define normal curvatures on each face of

the triangle mesh in order to estimate the principal direc-

tions and to characterize elliptical, umbilical, flat and hy-

perbolic regions. The proposed new method is presented

in Chapter 2. In the examples (Chapter 3) we show the

proposed method oǹ‘ synthetić’ and real triangulated sur-

faces.

2 Curvatures defined on faces

2.1 Geodesic circle of a triangle

Instead of computing surface properties at vertices in ver-

tex neighborhoods we define curvature values ordered to

faces. The center of the defined region is the barycentric

center of the given triangle. We intersect the mesh with

normal planes passing through the face normal of the tri-

angle, then we measure a given geodesic radius along the

polygonal lines of intersection in both directions from the

center point. In this way we get a number of curved diame-

ters of the geosedic circle bent on the mesh around the face.

We call this geodesic neighborhood “splat” after Kobbelt

[8] and the set of the polygonal diameters “spider” after

Simari [16] (Fig. 3). Then we compute the chord lengths

of the constructed diameters in order to estimate normal

curvature values.

N

Figure3: Geodesic circle of a face
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2.2 Osculating circle and normal curvature

We define in each normal plane an osculating circle to the
face determined by the endpoints of the bent diameter and
the face normal (Fig. 4).

r

r
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n

Figure 4: Osculating circle in a normal section

Denoterg the given geodesic radius,d the chord length
between the endpoints of the curved diameter, 2α the un-
known central angle andrn the required radius of the oscu-
lating circle. From the equations

rnα = rg and rn sinα =
d
2

we get forα
d

2rg
=

sinα
α

.

We apply the approximation

sinα ≈ α−
α3

6
, 0 < α << 1

and get

α ≈

√

(1−
d

2rg
)6,

consequently,

rn ≈
rg

α
if α 6= 0 and κn ≈

α
rg

is the radius of the osculating circle and the normal curva-
ture, respectively.

2.3 Principal directions and principal curvatures

Repeating this computation for a set of normal sections in
the geodesic neighborhood of the given triangle we obtain
normal curvature valuesκn,i, i = 1, . . .k. If the mesh is
a dense triangulation of a regular surface then the normal
planes belonging to the minimal and maximal normal cur-
vatures are orthogonal to each other. They determine the
principal directions.

We select the maximal curvature and define it as first prin-
cipal curvatureκ1 and the corresponding directionT1 in
the plane of the current triangle as first principal direc-
tion. This direction is fairly stable, even if we compute
with smaller geodesic circles. The second principal direc-
tion T2 is orthogonal to it. In the case of properly defined
geodesic circle and nearly regular triangulation it is the di-
rection belonging to the maximal chord length (Fig. 5).

N
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T2
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Figure 5: Principal directions

3 Examples

In order to compute a geodesic disk around a triangle
face in a mesh we have to construct a flexible polyhe-
dral data structure on the mesh which differentiates inner
and boundary edges, moreover “feature edges” along sharp
ridges. Then we have to implement an algorithm for com-
puting the lines of intersection of the mesh and the defined
normal planes [17]. The normal sections on the mesh are
polygonal lines, and the arc length on the approximated
surface is measured along these polygonal lines.

The triangulated cylindrical meshes in Fig. 6 and 7 are
generated from the analytical description of a cylindrical
surface. The vertices of such a “synthetic” mesh are ly-
ing exactly on the surface approximated by the mesh. The
geodesic radius in Fig 6 is 3.5 times the average size of
the triangles. The number of the computed diameters is
24. In Fig 7 the same cylindrical surface is shown with dif-
ferent triangulation. The geodesic radius is 0.6 times the
average size of the triangles in the mesh. The largest cur-
vature computed by the proposed method are 0.0402 and
0.0405, respectively, instead of 0.0400. Hence the relative
errors in the curvature estimation are 0.5% and 1.2%, re-
spectively. The corresponding principal directions are in
both cases the most perpendicular ones to the axis of the
cylinder among the 24 tangent directions. These directions
are shown in the figures with longer segments.
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Figure 6: Splat on a cylindrical surface

Figure 7: The same cylindrical surface

The second example shows that our curvature estimation
works also in the case, where one-ring neighborhoods can-
not be applied.

Figure 8: Splat on the sphere

In Fig. 8 a real triangle mesh approximating a sphere is
shown. In this mesh there is a noise in the vertex data,
and in the size of the triangles. The chosen geodesic ra-
dius is three times the average triangle size. The difference
in the computed normal curvatures is about 3%, and this
relative error does not change when the geodesic radius is
varying between 2.5 and 7 times the average triangle size.
This accuracy in the computation is comparable to the pub-
lished results in the literature analysing curvature estima-
tion methods [5].

In Fig. 9 and 10 a synthetic mesh of one eighth of a torus is
shown. In Fig 9 the geodesic radius is three times the aver-
age triangle size, and the results in the principal directions
are very good, considering the relative coarse approxima-
tion with 24 directions in the disk. In Fig 10 the geodesic
disk is apparently too big to get reliable approximations
(5 times the average triangle size) for the specified triangle
face. In this picture only boundary and silhouette edges are
shown besides the 24 diameters of the geodesic disk.

Figure 9: Splat on the torus

Figure 10: The same facette with a bigger splat
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According to our experience the best measurement of the
radius of a geodesic disk is between 2.5 and 3.5 times the
average triangle size in a dense mesh. Of course, the mesh
should provide a proper surface approximation. The exam-
ples have shown that our face-based curvature estimation
works better than vertex-oriented methods using a one-ring
neighborhood, especially in the case when the mesh con-
tains long narrow triangles.

Some more investigations have to be done in the future,
e.g., in the analysis of relative errors and in further appli-
cations.

4 Conclusion

We have introduced curvature values ordered to faces in
triangle meshes by laying a flexible circular disk with user-
specified radius onto each face of the mesh. From the
chords of such a bent disk and from the face normal we
have defined normal curvatures of the current face. The
examples have shown that the obtained principal curva-
ture values and the corresponding principal directions are
quite reliable if the radius of the disk achieves an optimal
size. Our method provides a good classification of elliptic,
parabolic, flat and hyperbolic regions of the mesh.

We have implemented the algorithm for constructing
geodesic disks on triangle meshes and for estimating nor-
mal curvatures and principal directions in Java.
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