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radove iz područja geometrije, primijenjene geometrije i
kompjutorske grafike.

UPUTSTVA ZA PREDAJU RADA . Znanstveni radovi tre-
baju biti napisani na engleskom ili njemačkom jeziku,
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tori dostavljaju elektronskom poštom kao ASCII da-
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KoG•10–2006 V. Benić, S. Gorjanc: (1,n) Congruences

Review

Accepted 13.12.2006.

VLADIMIR BENIĆ
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(1,n) Congruences

(1,n) Congruences

ABSTRACT

The first order algebraic congruences are classified into

two basic classes which depend on their directing curves.

By the method of synthetic geometry, we investigated the

basic properties for each of these classes: the construction

of rays, singularities, decomposition into developable sur-

faces, focal properties and the types of rays. The paper

ends with a short analytical approach, which enables the

visualizations of these congruences in the program Mathe-
matica. Some exmples are shown.

Key words: congruence, decomposition on developable

surfaces, focal lines, singularities, visualization

MSC 2000: 51M15,51M30,51N10,51N35,68U05

(1,n) kongruencije

SAŽETAK

Algebarske kongruencija prvoga reda razvrstane su u dvije

osnovne klase, ovisno o njihovim ravnalicama. Za svaku od

tih klasa, metodologijom sintetičke geometrije, istražuju se

osnovna svjstva: konstrukcija zraka, singulariteti, dekom-

pozicija na razvojne plohe, žarǐsne osobine te vrste zraka.

Na kraju se daje i kratki analitički pristup koji je omogućio

izradu programa za vizualizaciju ovih kongruencija u pro-

gramu Mathematica. Pokazano je nekoliko primjera.

Ključne riječi: kongruencija, dekompozicija na razvojne

plohe, žarǐsna linija, singulariteti, vizualizacija

1 Introduction

A congruenceC is a double infinite line system, i.e. it is a
set of lines in a three-dimensional space (projective, affine
or Euclidean) depending on two parameters. A linel ∈ C
is said to be aray of the congruence.

Theorderof a congruence is the number of its rays which
pass through an arbitraty point; theclassof a congruence
is the number of its rays which lie in an arbitrary plane.
mth order, nth classcongruence is signedC m

n .

A point is called thesingular pointof a congruence if∞1

rays pass through it. A plane is called thesingular plane
of a congruence if it contains∞1 rays.

Rays in a congruence can be decomposed in two ways into
a one-parameter family of developable surfaces (torses) so
that through every rayl ∈ C pass two torses that are real
and different (the case ofhyperbolicray), or imaginary (an
elliptic ray), or real and coincident (aparabilic ray).

The points of contact of a rayl ∈ C with the edges of re-
gression (cuspidal edges) of these torses are called thefoci
of l . The foci ofl are the intersection points ofl with con-
secutive rays of a congruence. The surfaces formed by the
foci of the rays of a congruence are called itsfocal sur-
faces. Each ray of a congruence touches its focal surface
at the foci. Two planes defined as the planes containing a

ray and consecutive rays are thefocal planesof a congru-
ence. The focal surface is the envelope of the focal planes.
A congruence clearly reciprocates into a congruence. The
focal planes and points are interchanged and the focal sur-
face reciprocates into the new focal surface.
[11], [5], [9], [1]

Since the lines of the congruence are bitangents of the fo-
cal surface, every congruence of lines may be regarded as
the system of bitangents of a surface. The surface may,
however, break up into two separate surfaces, and the orig-
inal surface, or each or either of the component surfaces
may degenerate into a curve; we have thus as congruences
the following systems of lines:

1. the bitangents of a surface,

2. common tangents of two surfaces,

3. tangents to a surface from the points of a curve,

4. common transversales of two curves,

5. lines “through two points” of a curve,

where the last four cases being degenerate cases of the first,
which is the general one. [9, p.37]

5
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2 1st order congruences

It was proved that the rays of the first order congruences
are always tranversales of two curves, or they intersect the
same space curve twice. Beside that it was proved that the
only congruence of the first order, consisting of a system
of lines meeting a proper curve twice, is when the curve is
a twisted cubic. ([9, p. 64], [14, pp. 1184-1185], [13, p.
32])

If a congruenceC is a system of lines meeting two direct-
ing curves of the ordersm andm, which haveα common
points, the order of a congruence ismm, −α. The only
congruence of the first order of this kind is when the di-
recting curves are a curve of thenth order and a straight
line meeting itn−1 times. [9, p. 64]

Therefore, we have only two types of the congruences of
the first order:

Type I 1st odrernth class congruencesC 1
n are the systems

of lines which intersect a space curvecn of the order
n and a straight lined, wherecn andd haven− 1
common points.

Type II 1st order 3rd class congruenceB 1
3 is the system of

lines which meet a twisted cubic twice.

2.1 Congruences of the type I

2.1.1 Directing lines ofC 1
n

The directing lines of a congruenceC 1
n are a space curve

cn of the ordern and a straight lined which intersectscn

in n− 1 points. If all intersection points are the regular
points of cn we will sign themD1

1, .....,D
1
n−1. Some of

these points can coincide. There are cases when the line
d is the tangent line ofcn, the tangent at inflection, etc. If
cn andd haves-ple contact at one regular common point it
is signedD1,s

i , wherei ≤ n−s. (See Fig. 1)

Figure 1

Thenth order space curve can possess singular points with
the highest multiplicityn−2. If the directing curvecn has
a multiple point it must lie on the lined because ifcn had a
mutiple point out of the lined, the plane through that point
and the lined would cut the curvecn in more thann points,
which is impossible. Thek-ple point of the curvecn which
lies on the lined is signedDk

i , wherei ≤ n−k. Three ex-
amples of 7th and 8th order curves with dobule and triple
points are shown in Fig. 2.

Figure 2

2.1.2 Singular points ofC 1
n

a) All singular points ofC 1
n (the points which contain∞1

rays ofC 1
n ) lie on its directing linescn andd.

If a pointC lies on the curvecn andC 6= D j
i , then the rays

of C1
n which pass troughC form the pencil of lines(C) in

the planeδ ∈ [d] which containsC andd. (See Fig. 3)

Figure 3

b) If a point D lies on the lined andD 6= D j
i , then all the

lines which joinD with the points of the curvecn are the
rays ofC 1

n . They formnth degree coneζn
D with the vertex

D. Sincecn andd haven− 1 common points, this cone
intersects (or tuoches) itselfn−1 times through the lined,
thus the lined is (n−1)-ple generatrix ofζn

D. (See Fig. 4)

6
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Figure 4

c) If a point Dk
i is the intersection point ofcn andd and

if it is a k-ple point of the curvecn, then the rays through
Dk

i which cutcn form (n−k)th degree coneζn−k
Dk

i
with the

vertexDk
i . The lined is (n−k−1)-ple genetartix ofζn−k

Dk
i

.

Besides that the rays through the pointDk
i form k pencils

of lines (Dk
i ) in the planes determined by the lined andk

tangent lines ofcn at Dk
i . If the intersection point isD1,s

i ,
then the pencil of lines(D1,s

i ) in the rectifying plane ofcn

atD1,s
i are also the rays of a congruence.

The other lines of the sheefs{Dk
i } and{D1,s

i } are not re-
garded as the rays of a congruence.

The example of the rays through the regular intersection
pointD1

1 is shown in Fig. 5.

Figure 5

2.1.3 Rays ofC 1
n through an arbitrary point

Every pointA which is not the singular point ofC 1
n , i.e.

A /∈ cn,A /∈ d, determines the planeδA ∈ [d] which cutscn

in only one pointC which in general does not lie on the line
d. The lineAC, which cutd in one pointD, is the unique
ray ofC 1

n through the pointA. If the planeδA contains one
of the the tangent lines ofcn at the intersection pointDk

i (or
if it is the rectifying plane atD1,s

i ), then the pointsC and
D cioncide withDk

i (D1,s
i ) and the lineADk

i (AD1,s
i ) is the

unique ray ofC 1
n throughA. (See Fig. 6)

Figure 6

2.1.4 Singular planes ofC 1
n

All singular planes ofC 1
n (the planes which contain∞1 rays

of C 1
n ) are the planes of the pencil[d]. From 2.1.2. it is

clear that in every planeδ ∈ [d] lie thes pencil of rays(C)

or (Dk
i ) or (D1,s

i ). (See Fig. 7)

It is possible that some of the tangent lines at intersection
pointsDk

j lie in the same plane of the pencil[d]. In such
case there is more than one pencil of lines in the plane de-
termined by these coplanar tangent lines.

Figure 7

7
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2.1.5 Rays ofC 1
n through an arbitrary plane

Every planeα which is not the singular plane ofC 1
n , i.e.

α /∈ [d], containsn rays of the congruence. The planeα
cuts lined in one pointD andnth order space curvecn in
n pointsCj , j = 1, ...,n. The linesDCj aren rays of the
congruenceC 1

n in the planeα. They are the intersection of
the planeα andnth degree coneζn

D and can be real and dif-
ferent, coinciding or imaginary. Ifα cuts the lined in Dk

i ,
thenn−k rays are the intersection ofα and the coneζn−k

Dk
i

and otherk rays are the intersection ofα and the planes
throughd determined by the tangent lines ofcn atDk

i . (See
Fig 8)

Figure 8

2.1.6 Decomposition ofC 1
n into developable surfaces

As mentioned in the introduction every congruence can be
decomposed in two ways into a one-parameter family of
developables. These two families arise if one of the two
parameters of which a congruence depends, is fixed.

In the case of the 1st order congruences of the type I the
devlopables are the sets of rays through singular points, i.e.
one family is formed by thenth degree conesζn

D, and the
other by the planes of the pencil[d]. Every ray ofC 1

n is
the intersection of two developables, one from each fam-
ily. Sinced is (n−1)-ple generatrix ofζn

D, every plane of
[d] cuts it into only one more generatrix which is the ray of
a congruence. For the rays through the intercestion points
Dk

i thenth degree cones split into(n−k)th degree cone and
k planes through the lined. (See Figures 4, 5 and 7)

2.1.7 Focal properties− hyperbolic, elliptic and
parabolic rays ofC 1

n

In general case the ray of a congruence touches the focal
surface at foci which lie on the cuspidal edges of the de-
velopables. If the developables through the ray are real and
different, the ray is hyperbolic and the foci are real and dis-
tinct. If the developables are imaginary, the ray is elliptic

and the foci are imaginary. If the developables coincide,
the ray is parabolic and the foci coincide. A congruence
or the partition thereof is said to be hyperbolic, elliptic or
parabolic if its rays are hyperbolic, elliptic or parabolic.

In the case of the 1st order surfaces of the type I the fo-
cal surface degenerates into the directing curvescn andd.
The developables have not the cuspidal edges, only cusp-
idal points: the vertecesD of the conesζn

D and the points
C which are the intersections of the planesδ ∈ [d] and the
curvecn. Thus, each ray ofC 1

n has the foci on the directing
linescn andd. If they are real, the congruence is hyperbolic
with parabolic rays inn− 1 planes through the pointsDk

i
where the developables and foci coincide. If the directing
lines are imaginary the congruence is elliptic.

2.2 Congruences of the type II

If a congruenceB is the set of lines which cut a proper
curve twice, this curve must be a twisted cubic. Since
through an arbitrary point only one ray of the 1st order
congruence passes, the projection of the directing curve
from this point onto an arbitrary plane has only one double
point. Thus this projection is the 3rd order plane curve. As
the original curve and its projection have the same order,
then the directing line of a congruenceB is a twisted cubic.
The projection of a twisted cubic onto a plane from a point
on a secant line yields a nodal cubic and from a point on a
tangent line a cuspidal cubic [4, p. 54]. (See Fig. 9)

The tangent and a secant lines of a twisted cubicb3 fill
up the projective space and are pairwise disjoint, except at
points at curve itself [4, p. 90]. Thus through an arbitrary
point unique ray of the congruenceB passes.

Figure 9

8
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It is clear that such congruence is of the 3rd class (B 1
3),

because every plane cuts the curveb3 in 3 points and the
lines joining them are three rays of a congruence. These
three rays can be: three real and different (a), one real and
two imaginary (b), three real where two of them coincide
(c) and three real and coinciding (d). (See Fig. 10)

Figure 10

All singular points ofB 1
3 lie on the twisted cubicb3. The

lines which join the pointB ∈ b3 with the other points of
b3 form 2nd degree coneζ2

B. (See Fig. 11)

Figure 11

Since every plane contains exactly three rays ofB 1
3 there

are no singular planes ofB 1
3.

B 1
3 can be decomposed into one family of developables.

This family consists of the conesζ2
B, B ∈ b3. Every ray

of B 1
3 which cutsb3 at the pointsB1, B2 is the part of the

intersecion of the conesζ2
B1

, ζ2
B2

. Namely, the intersection
of ζ2

B1
andζ2

B2
is b3∪B1B2.

The curveb3 is the focal curve ofB 1
3, it contains the cus-

pidal points ofζ3
B, B∈ b3. The ray ofB 1

3 is hyperbolic if
the intersection pointsB1,B2 ∈ b3 are real and different, it
is parabolic if they coincide (the ray is a tangent ofb3) and
it is elliptic if they are imaginary.

The parabolic rays ofB 1
3 form the tangent developable of

b3. (See Fig. 12)

Figure 12

The rays of such congruences are also the intersections
of the corresponding elements of two collinear bundles of
planes{B1}, {B2}, [7, p. 135], [14, p. 1185]. In this case
the basic points of the bundles (B1, B2) lie on a twisted cu-
bic b3, and the unique ray through an arbitrary point can
be constructed as the part of the intersection of two ruled
quadrics. These quadrics pass throughb3 and their rul-
ings are determined by the collineation between the bun-
dles{B1} and{B2}, [7, p. 136]. In the special case when
one plane in the collineation between{B1} and{B2} cor-
responds to itself, the basic cubicb3 splits into one straight
line and a conic which have one common point, and the
congruenceB 1

3 splits into the 2nd class congruenceC 1
2 and

the field of lines in the plane of the conic. These congru-
ences are elaborated in detail in [2].

3 Analytical approach and Mathematica
visualizations

If two algebraic space curvesc1 andc2 are given by the
following parametric equations

c1 ... x = x1(u), y = y1(u), z= z1(u),

x1,y1,z1 : I1 → R, I1 ⊆ R, x1,y1,z1 ∈C1(I1)

c2 ... x = x2(v), y = y2(v), z= z2(v),

x2,y2,z2 : I2 → R, I2 ⊆ R, x2,y2,z2 ∈C1(I2), (1)

9
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then the set of lines which join the points ofc1 andc2 are
given by the following equations

x−x1(u)

x1(u)−x2(v)
=

y−y1(u)

y1(u)−y2(v)
=

z−z1(u)

z1(u)−z2(v)
, (2)

(u,v) ∈ I1× I2 ⊆ R
2.

In the previous section, for drawing the directing lines of
C 1

n , we used the following parametric functions:

d ... x1(u) = 0, y1(u) = 0, z1(u) = u, u∈ R,

cn ... x2(v) = ax(v−v1) · · · (v−vn−1),

y2(v) = ayvx2(v),

z2(v) = v, v,ax,ay,v1, . . . ,vn−1 ∈ R. (3)

It is clear that the lined is the axiszandcn is thenth order
space curve which cuts the axisz at the pointsDi(0,0,vi),
i ∈ {1, ...,n−1}.

If the polynomial x2(v), from (3), contains the factor
(v− vi)

s, then i ≤ n− s andd andcn haves−ple contact
at the pointDi(0,0,vi).

If the polynomialz2(v), from (3), takes the form

z2(v) = v(v−vi1) · · · (v−vik), vi j 6= 0, (4)

i1, . . . , ik ∈ {1, . . . ,n−1}, k≤ n−2,

then(0,0,0) is thek−ple singular point ofcn and the coor-
dinates of intersection points ofcn andd are(0,0,z2(vi)).

(3) and (2) give the following equations of the rays ofC 1
n

x
x2(v)

=
y

y2(v)
=

u−z
u−z2(v)

, (u,v) ∈ R
2. (5)

The above equations enable computer visualization of the
rays ofC 1

n andB 1
3. Based on this we made the program in

webMathematicawhich enables interactive visualizations
of C 1

n on the internet. It is available at the following ad-
dress:
www.grad.hr/itprojectmath/Links/webmath/indexeng.html

3.1 Examples

In the following examples the graphics are produced with
the programMathematica.

EXAMPLE 1

Two dsiplays of the same 2nd class congruence are shown
in Fig. 13. The directing lines of thisC 1

2 are the axisz and
the circle given by the following parametric equations:

x(v) = cosv+1, y(v) = sinv, z(v) = 0, v∈ [0,2π].

Figure 13

EXAMPLE 2

The rays of the 4th class congruence are shown in Fig. 14.
The directing lines of this congruence are the Viviani’s
curvec4 which cuts the axisz in two points, but one of
the intersection points is the double point ofc4. The para-
metric equations ofc4 are:

x(v) =

√
2

2
(cosv−2sin

v
2
−1), y(v) = sinv,

z(v) =

√
2

2
(cosv+2sin

v
2
−1), v∈ [−2π,2π].

Figure 14
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EXAMPLE 3

Two displays of the same 7th class congrence are shown in
Fig. 15. The directing lines of thisC 1

7 are the axisz and
the curvec7 which is given by the following parametric
equations:

x(v) =
1
10

v(v−1)(v−2)(v−3)(v−3.5)(v−4),

y(v) = 2vx2(v),

z(v) = v, v∈ R.

Figure 15

EXAMPLE 4

The visualization ofB 1
3 whose directing curve is given by

the following parametric equations

x(v) = v,

y(v) = (v−1)(v+1),

z(v) = (v−1)2(v+1), v∈ R

is shown in Fig. 16. The same congruence, with red
parabolic rays, is shown in Fig. 17 for two different view
points.

Figure 16

Figure 17

11
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ABSTRACT

A face-based curvature estimation on triangle meshes is

presented in this paper. A flexible disk is laid on the mesh

around a given triangle. Such a bent disk is used as a

geodesic neighborhood of the face for approximating nor-

mal and principal curvatures. The radius of the disk is free

input data in the algorithm. Its influence on the curvature

values and the stability of estimated principal directions

are investigated in the examples.

Key words: triangle mesh, curvature
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O zakrivljenostima na trokutnim mrežama

SAŽETAK

U članku je prikazana procjena zakrivljenosti na trokut-

nim mrežama, bazirana na stranicama. Gipki disk položen

je na mrežu oko danog trokuta. Takav prilagodljiv disk

koristi se kao geodetska okolina stranice za aproksimaciju

normalnih i glavnih zakrivljenosti. Polumjer diska je neza-

visni ulazni podatak u algoritmu. U primjerima se istražuje

njegov utjecaj na vrijednosti zakrivljenosti i na stabilnost

procijenjenih glavnih smjerova.

Ključne riječi: trokutna mreža, zakrivljenost

1 Introduction

Triangle meshes are the most frequently used surface rep-
resentations in many surface-oriented applications. Sur-
face curvature properties have been successfully employed
for solution of different practical problems, as smooth-
ing or simplifying meshes in modeling and manufacturing,
also for surface classification and 3D object recognition
in computer vision research, etc. Discrete counterparts of
continuous definitions of differential operators, curvature
values, geodesic curves and Dirichlet energy, etc. have
been given and derived for arbitrary triangle meshes in [3],
[10], [13] and [14].

Almost all methods for surface derivative and curvature es-
timations on meshes have been vertex connectivity based.
In these approaches a specified neighborhood of vertices
formed by adjacent vertices, edges and faces is used to ap-
proximate the surface normal, surface derivatives and cur-
vature values at a vertex. The algorithms use either analytic
methods based on surface fitting, or they work with dis-
crete differential operators. The crucial first step in these
algorithms is the computation of a vector at each vertex
that approximates the true normal vector at this point of the
surface represented by the mesh. This problem is equiv-

alent to the computation of the best tangent plane to the
mesh at a given vertex. Most methods compute a weighted
average of facet normals in a one-ring neighborhood of the
vertex.

N =

∑

ω jNj

mi
, j = 1. . .mi ,

wheremi is the number of edges emanating from the ver-
texvi , ω j = k ·Area(trianglej), k > 0 andArea(trianglej)

is either surface area or Voronoi-surface area or a mixed
surface area of the triangle{vi,v j ,v j+1} (Fig. 1).

v i

jv

v j+1

N j

N?

Figure 1: One-ring neighborhood of a vertex
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A number of proposals have been published for choosing
the weights or the neighborhood for determining the best
normal vector ([15], [11], [9]).

An other problem is to estimate normal curvatures, which
is equivalent to the definition of osculating circles produc-
ing a second-order approximation to those curvature values
([12], [19]).

A normal curvature estimation in a one-ring neighborhood
can be given simply by defining the osculating circle in
a normal plane through the verticesvi , v j and the normal
vectorN (Fig. 2).

vi

jv

N

T

Figure 2: Osculating circle in a normal plane

The curvature of this circle is

κn(vi) ≈
2 < N,(v j −vi) >

|v j −vi|2
,

where<,> denotes the dot product.

Instead of circle in a normal plane, interpolating quadratic
polynomial curve is also used e.g. in [7]. The one-
ring neighborhood of a specified vertex is replaced by a
Voronoi or mixed surface area [10], it is extended in [7]
and geodesic neighborhoods are also used ([12], [16]) in
the computations. The selection of neighborhood size can
affect results significantly: small neighborhoods provide
better estimates for clean data, while increasing the neigh-
borhood size smoothes the estimates, leading to less sen-
sitivity to noise. Obviously, small errors in these approxi-
mations lead rapidly to unreliable, noisy curvature values.
Comparisons of five frequently used methods are given in
[5].

Analytic methods are also applied for curvature estima-
tions by fitting a surface to the mesh in the neighborhood
of the point of interest and evaluating its curvatures ([5],
[6], [19]). Principal curvatures and principal directions

can be determined on the base of Euler theorem ([11], [2],

[4]). Mean and Gauss curvature values can be computed

from the curvature tensor, i.e. from the Weingarten matrix

or from its symmetric extension by eigen-decomposition

([12], [18]). The Gauss-Bonnet theorem gives a direct

method for the computation of Gauss curvature. It has two

different discrete forms which provide good approxima-

tions for special triangulations of surfaces [20].

In this paper we define normal curvatures on each face of

the triangle mesh in order to estimate the principal direc-

tions and to characterize elliptical, umbilical, flat and hy-

perbolic regions. The proposed new method is presented

in Chapter 2. In the examples (Chapter 3) we show the

proposed method oǹ‘ synthetić’ and real triangulated sur-

faces.

2 Curvatures defined on faces

2.1 Geodesic circle of a triangle

Instead of computing surface properties at vertices in ver-

tex neighborhoods we define curvature values ordered to

faces. The center of the defined region is the barycentric

center of the given triangle. We intersect the mesh with

normal planes passing through the face normal of the tri-

angle, then we measure a given geodesic radius along the

polygonal lines of intersection in both directions from the

center point. In this way we get a number of curved diame-

ters of the geosedic circle bent on the mesh around the face.

We call this geodesic neighborhood “splat” after Kobbelt

[8] and the set of the polygonal diameters “spider” after

Simari [16] (Fig. 3). Then we compute the chord lengths

of the constructed diameters in order to estimate normal

curvature values.

N

Figure3: Geodesic circle of a face
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2.2 Osculating circle and normal curvature

We define in each normal plane an osculating circle to the
face determined by the endpoints of the bent diameter and
the face normal (Fig. 4).

r

r

d/2

g

n

Figure 4: Osculating circle in a normal section

Denoterg the given geodesic radius,d the chord length
between the endpoints of the curved diameter, 2α the un-
known central angle andrn the required radius of the oscu-
lating circle. From the equations

rnα = rg and rn sinα =
d
2

we get forα
d

2rg
=

sinα
α

.

We apply the approximation

sinα ≈ α− α3

6
, 0 < α << 1

and get

α ≈
√

(1− d
2rg

)6,

consequently,

rn ≈
rg

α
if α 6= 0 and κn ≈

α
rg

is the radius of the osculating circle and the normal curva-
ture, respectively.

2.3 Principal directions and principal curvatures

Repeating this computation for a set of normal sections in
the geodesic neighborhood of the given triangle we obtain
normal curvature valuesκn,i, i = 1, . . .k. If the mesh is
a dense triangulation of a regular surface then the normal
planes belonging to the minimal and maximal normal cur-
vatures are orthogonal to each other. They determine the
principal directions.

We select the maximal curvature and define it as first prin-
cipal curvatureκ1 and the corresponding directionT1 in
the plane of the current triangle as first principal direc-
tion. This direction is fairly stable, even if we compute
with smaller geodesic circles. The second principal direc-
tion T2 is orthogonal to it. In the case of properly defined
geodesic circle and nearly regular triangulation it is the di-
rection belonging to the maximal chord length (Fig. 5).

N

T1

T2

dmax

dmin

Figure 5: Principal directions

3 Examples

In order to compute a geodesic disk around a triangle
face in a mesh we have to construct a flexible polyhe-
dral data structure on the mesh which differentiates inner
and boundary edges, moreover “feature edges” along sharp
ridges. Then we have to implement an algorithm for com-
puting the lines of intersection of the mesh and the defined
normal planes [17]. The normal sections on the mesh are
polygonal lines, and the arc length on the approximated
surface is measured along these polygonal lines.

The triangulated cylindrical meshes in Fig. 6 and 7 are
generated from the analytical description of a cylindrical
surface. The vertices of such a “synthetic” mesh are ly-
ing exactly on the surface approximated by the mesh. The
geodesic radius in Fig 6 is 3.5 times the average size of
the triangles. The number of the computed diameters is
24. In Fig 7 the same cylindrical surface is shown with dif-
ferent triangulation. The geodesic radius is 0.6 times the
average size of the triangles in the mesh. The largest cur-
vature computed by the proposed method are 0.0402 and
0.0405, respectively, instead of 0.0400. Hence the relative
errors in the curvature estimation are 0.5% and 1.2%, re-
spectively. The corresponding principal directions are in
both cases the most perpendicular ones to the axis of the
cylinder among the 24 tangent directions. These directions
are shown in the figures with longer segments.

15



KoG•10–2006 Márta Szilvási-Nagy: About Curvatures on Triangle Meshes

Figure 6: Splat on a cylindrical surface

Figure 7: The same cylindrical surface

The second example shows that our curvature estimation
works also in the case, where one-ring neighborhoods can-
not be applied.

Figure 8: Splat on the sphere

In Fig. 8 a real triangle mesh approximating a sphere is
shown. In this mesh there is a noise in the vertex data,
and in the size of the triangles. The chosen geodesic ra-
dius is three times the average triangle size. The difference
in the computed normal curvatures is about 3%, and this
relative error does not change when the geodesic radius is
varying between 2.5 and 7 times the average triangle size.
This accuracy in the computation is comparable to the pub-
lished results in the literature analysing curvature estima-
tion methods [5].

In Fig. 9 and 10 a synthetic mesh of one eighth of a torus is
shown. In Fig 9 the geodesic radius is three times the aver-
age triangle size, and the results in the principal directions
are very good, considering the relative coarse approxima-
tion with 24 directions in the disk. In Fig 10 the geodesic
disk is apparently too big to get reliable approximations
(5 times the average triangle size) for the specified triangle
face. In this picture only boundary and silhouette edges are
shown besides the 24 diameters of the geodesic disk.

Figure 9: Splat on the torus

Figure 10: The same facette with a bigger splat
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According to our experience the best measurement of the
radius of a geodesic disk is between 2.5 and 3.5 times the
average triangle size in a dense mesh. Of course, the mesh
should provide a proper surface approximation. The exam-
ples have shown that our face-based curvature estimation
works better than vertex-oriented methods using a one-ring
neighborhood, especially in the case when the mesh con-
tains long narrow triangles.

Some more investigations have to be done in the future,
e.g., in the analysis of relative errors and in further appli-
cations.

4 Conclusion

We have introduced curvature values ordered to faces in
triangle meshes by laying a flexible circular disk with user-
specified radius onto each face of the mesh. From the
chords of such a bent disk and from the face normal we
have defined normal curvatures of the current face. The
examples have shown that the obtained principal curva-
ture values and the corresponding principal directions are
quite reliable if the radius of the disk achieves an optimal
size. Our method provides a good classification of elliptic,
parabolic, flat and hyperbolic regions of the mesh.

We have implemented the algorithm for constructing
geodesic disks on triangle meshes and for estimating nor-
mal curvatures and principal directions in Java.
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Two- and Three-dimensional Tilings Based on a
Model of the Six-dimensional Cube

ABSTRACT

A central-symmetric three-dimensional model of the six-

dimensional cube can give us the idea of filling the space

with mosaics of zonotopes. This model yields also plane

tilings by its intersections. Using the parts of the model the

mosaic and the tiling can further be dissected by projec-

tions, associations and Boolean operations. Further con-

structions are also indicated in the paper.

Key words: 3-dimensional models of the hypercube,

plane-tiling, space-filling

MSC 2000: 51M20, 68U07

2-dimenzionalno i 3-dimenzionalno popločavanje
zasnovano na modelu 6-dimenzionalne kocke

SAŽETAK

Centralno simetrični 3-dimenzionalni model 6-

dimenzionalne kocke može nam dati ideju kako prostor

ispuniti s mozaicima zonotopa. Pomoću presjeka, ovaj

model vodi takod-er i ka ravninskom popločavanju.

Koristeći dijelove modela, mozaik i popločavanje mogu

biti razdijeljeni projekcijama, asocijacijama i Boolovim

operacijama. U članku se takoder navode i daljnje

konstrukcije.

Ključne riječi: 3-dimenzionalni model hiperkocke,

ravninsko popločavanje, prostorno popunjavanje

Lifting the vertices of ak sided regular polygon from their
plane perpendicularly by the same height and joining them
with the centre of the polygon, we get thek edges of the hy-
percube (k-cube) modelled in the three-dimensional space
(3-model). From these the 3-models or their polyhedral

surface (Fig. 1) can be generated as well in different pro-
cedures [3, 4, 5]. Each polyhedron from these will be a so
called zonotope [6], i.e. a “translational sum” (Minkowski-
sum) of some segments.

Figure 1
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Figure 2

Figure 3
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The 2-dimensional ortogonal projection of these 3-models
indicates the idea how to construct space-filling with this
model. However our 3-model of the 6-cube for exam-
ple does not fill the space. The projected grid of the 3-
cube joins our grid above and the cube fills the space well
known. The edges of the cube can be selected from the
conveniant lifted edges of the 6-cube’s 3-model. With the
selected four edges of the grid we can build the 3-model
of the 4-cube. The shell of this is a rhombic dodekahe-
dron which fills the space but this arrangement has not any
rotational symmetry without additional assumptions. We
can however replace a cube in the hole of the rotational-
symmetrically arranged rhombic dodekahedra and con-
tinue the filling in a sixfold polar array with a rhombic

triacontahedron which contains our 3-model of the 6-cube
(Fig. 2).

It can be seen, that we can fill the space with these
solids. The basic stones are to cut from a honeycomb by
symmetry-planes. If the cutting process has been com-
pleted, we have the basic stones from the three starting
solids (Fig. 3).

Another possibility is to rearrange our space-filling, as-
sembling the 3-models of thek- and j-cubes from lower-
dimensional cube 3-models. From the given 6 edges we
can combine the 3-models of 2< j < k cubes: 4 of the
3-cubes, 3 of the 4-cubes and 1 of the 5-cubes. Their addi-
tions (Fig. 4) can replace the 3-models of the abovek- and
j-cubes in our mosaic.

Figure 4
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Interpreting the starting construction of thek-cube 3-model
as a sequence of dispositions, the increasing dimensional
inner 2< j < k cube 3-models can “easily” be separated.
The edges of the 0,1, ...,k cube model-sequence are pa-
rallel to thek-segment chain approaching a starting helix,
and the disposition vectors are joining each other along this
segment chain. The model 0,1, ...,k−1 parts can also be
interpreted as intersections of two full models so that the
equal dimensional parts are positioned around the main di-
agonal of a full model, symmetrically to its centre point.
More on this full model (3-model of the n-cube) can be
read in [4], [5], [7], and on periodic and aperiodic tilings,
based on d-dimensional crystallographic space groups, you
find references in [1]. A further related topic might be: To
what extent are these 3-models certain axonometric pic-
tures of higher-dimensional cubes, created by a sequence
of parallel projections? The Pohlke-theorem has surely
limited validity in higher dimensions [2].

As it follows from our construction, the vertices lie in
planes parallel to the basic plane of the construction, there-

fore a plane-tiling appears on these horizontal intersections
of our space-filling solid-mosaics based on the 3-model of
the 6-cube (Fig. 5). This has rotational symmetries but the
diagonal intersections can be identical with the longitudi-
nal and cross-intersections (Fig. 6).

We can see in Fig. 7 the horizontal intersections alterna-
ting one another(0,1,2,3,2,1,0,1, ...) in the space-filling
mosaic based on the 3-model of the 6-cube. The tiling of
the intersections can further be dissected by the perpendi-
cular projected edges of the intersected solids (Fig. 8). A
similar phenomenon could be seen in the projection of the
inner edges of thej-cube 3-models.

Projecting the combination of the intersection grids, the
tiling can further be dissected (Fig. 9). The coloring here
is kept to one intersection and the grid of another one is
projected into this plane.

In Fig. 10 we have combined the grids of three and finally
of all four horizontal intersections. This is further dissected
by the projected edges of the intersected solids.

Figure 5 Figure 6

Figure 7 Figure 8
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Figure 9

Figure 10
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We can see in Fig. 11 the cross-intersections alternating
one another(0,1,2,1,0,1, ...) in the space-filling mosaic
based on the 3-model of the 6-cube. In the bottom row are
the intersections supplemented by the projected edges of
the intersected solids.

The alternating(0,1,2,3,4,5,6,5, ...) longitudinal inter-

sections of our mosaic are descripted in Fig. 12. The

methods of the further dissections could be applied here

similarly to the horizontal intersections.

Figure 11

Figure 12
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With the above methods two- and three-dimensional tilings
based on the 3-models ofk-cubes, can surely be made up to
k = 10 and probably furthermore, too. These cases are just
examined but not displayed yet in all details by the author.

The creation of the constructions and figures required for
the paper was aided by the AutoCAD program and the Au-
tolisp routines developed by the author.
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ABSTRACT

The paper makes an attempt to visualize one of the ho-

mogeneous geometries, the Sol geometry, by illustrating

first the geodesic curves and spheres then the so-called

translation curves and spheres. We’ve collected their ba-

sic properties, too.

Key words: visualization of Thurston’s geometries

MSC 2000: 53B20, 53C30

Vizualizacije krivulja i ploha u Sol geometriji

SAŽETAK

Ovaj članak je pokušaj vizualizacije jedne od homogenih

geometrija, Sol geometrije. Prvo se ilustriraju geodetske

krivulje i sfere, a zatim i tzv. translatirajuće krivulje i sfere.

Takod-er su navedena njihova osnovna svojstva.

Ključne riječi: vizualizacija Thurstonovih geometrija

“This (the Sol geometry)is the real weird. Unlike the
previous geometries, solve geometry isn’t even rotationally
symmetric. I don’t know any good intrinsic way to under-
stand it.” (J. R. WEEKS) [7]

1 Introduction

In [5] W. P. Thurston formulated a geometrization conjec-
ture for three-manifolds which states that every compact
orientable three-manifold has a canonical decomposition
into pieces, each of which admits a canonical geometric
structure from among the 8 maximal simply connected ho-
mogeneous Riemannian 3-geometriesE3, H3, S3, S2×R,

H2 ×R, S̃L(2,R), Nil and Sol. Obviously, the Poincaré
conjecture (a compact three-manifold with trivial funda-
mental group is necessarily homeomorphic to the 3-sphere)
is a special case of the Thurston conjecture. In the past
thirty years, many mathematicians have contributed to the
understanding of this problem, maybe the most important
attempts are due to R. Hamilton. In 2006 a scoop went
round the world claiming that a Russian mathematician,
G. I. Perelman could give a complete proof of the Thurston
conjecture and so the Poincare conjecture, too. Followed
by the complex and knotty proof (using modern differential
geometry of Ricci flows) the interest has turned to homo-
geneous spaces. This paper tries to help in understanding
one of the above geometries, theSol.

Let (M,g) be a Riemannian manifold. If for anyx,y∈ M
there does exist an isometryΦ : M →M such thaty= Φ(x),
then the Riemannian manifold is calledhomogeneous.

The visualization of the three possible two-dimensional
homogeneous Riemann geometriesE2, H2, S2 is famil-
iar to anyone, but in higher dimensions we face a lot of
open questions. Even in three dimensions, where first time
anisotropic cases also appear we have difficulties in the
imagination. No doubt, the standard models work forE3,
H3, S3, moreover real-time interactive graphics algorithms
have been developed by J. R. WEEKS that can be extended
even more for the product spacesS2×R, H2×R [8]. The
remaining three Thurston‘s homogeneous 3-dimensional

geometriesS̃L(2,R), Nil andSol, however are difficult to

handle. From these the twisted spaces̃SL(2,R) and Nil
need multiple imaging and there are just a few results about
them, whilest theSol (mentioned also assolv in the litera-
ture) is the most unusual as our motto above indicates, as
well (for more information consult [5], [6], [4]). We note
that in the paper [2] Emil MOLNÁR elaborated the projec-
tive interpretations of all the eight geometries, we only cite
his model forSol.
Sol geometry can be obtained by giving a group structure
T to be a semi-direct productR⋉ R2 as follows:

(

1 a b c
)









1 x y z
0 e−z 0 0
0 0 ez 0
0 0 0 1









=

(

1 x+ae−z y+bez z+c
)

∗ Supported by the Öveges József Programme OMFB-01525/2006
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is the right action by a translation(x,y,z) on an affine point
(a,b,c) yielding also a point ofSol expressed in homoge-
neous (projective) coordinates after choosing a fixed origin
O(1,0,0,0).

Then an invariant metric onSol(O,T) is given by

(ds)2 = e2z(dx)2 +e−2z(dy)2 +(dz)2,

as infinitesimal arc length square, now in any point
(1,x,y,z) [5], [2].

2 Geodesics and their representation

In the following we briefly recall from [1] the standard pro-
cedure yielding the geodesics ofSol.

Consider first the fundamental (metric) tensor from the
above mentioned equation

(gi j ) =





e2z 0 0
0 e−2z 0
0 0 1



 .

The well-known equation of geodesics

d2uk

dt2
+ Γk

i j
dui

dt
duj

dt
= 0

containing the Christoffel symbols of second kind:

Γk
i j = 1

2

(

∂g jl

∂ui + ∂gli
∂u j −

∂gi j

∂ul

)

glk turns [1] to

ẍ+2ẋż= 0
ÿ−2ẏż= 0

z̈−e2z(ẋ)2 +e−2z(ẏ)2 = 0.

Solving this differential equation system as a Cauchy prob-
lem

x(0) = 0 ẋ(0) = u
y(0) = 0 and ẏ(0) = v

z(0) = 0 ż(0) = w

u2 +v2+w2 = 1

we could arrange the following table that contains our re-
sults:

(1) x(t) = u
∫ t

0 e−2z(τ)dτ
u 6= 0 y(t) = v

∫ t
0 e2z(τ)dτ

v 6= 0 z(t) comes from the separable differential equation

0 < |w| =
√

1−u2−v2 < 1
dz

±
√

1−u2e−2z−v2e2z
= dt, for w ≷ 0

whose solution is non-elementary function.

(2) u 6= 0 x(t) = ut
v 6= 0 y(t) = vt
w = 0 z(t) = 0

(3) v = 0 x(t) = u
sinht

cosht +wsinht
y(t) = 0

0 < |w| =
√

1−u2 < 1 z(t) = ln(cosht +wsinht)

(4) u = 0 x(t) = 0

y(t) = v
sinht

cosht −wsinht
0 < |w| =

√
1−v2 < 1 z(t) = − ln(cosht −wsinht)

(5) u = 0 x(t) = 0
v = 0 y(t) = 0
|w| = 1 z(t) = ±t, for w = ±1

Table 1: Table of geodesics in Sol geometry, depending on the initialvelocity
parameters(u,v,w), u2 +v2 +w2 = 1.
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The forthcoming pictures try to visualize the most general
cases (1) and (3). As we easily see the change(u,v,w)
↔ (v,u,−w) leads to the isometry of the corresponding
geodesic curves.
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Fig. 1:The approximate view of the most general geodesic
curve with initial velocity parameters u= 0.9 and
v = 0.25 in the parameter interval t∈ [0,2]. The
first picture shows the curve in a general view, the
other from the direction of z-axis.
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Fig. 2:Geodesic curve starting in the [x,z] coordinate
plane with u= 0.9 in a general view in the param-
eter interval t∈ [0,2].

Clearly, the geodesic sphere unfortunatelly can not be ex-
pressed in a closed explicite form. We give approximations
by plotting the endpoints of many geodesic curves (of the
first type) with different initial unit velocities, according to
geographic parameters

u = cosϑcosϕ −π ≤ ϕ ≤ π

v = cosϑsinϕ − π
2
≤ ϑ ≤ π

2
w = sinϑ .

That means, ifϑ is fixed andϕ varies, then the endpoints of
geodesics describe an altitude circle. Similarly we get lon-
gitude half-circle for fixedϕ. The following figures show
our results.
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Fig. 3: Geodesic sphere of radius 0.1. The first picture shows the sphere in a general view, then from the direction of axes
z, y and x, respectively.
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Fig. 4: The same arrangement as in Fig. 4 but now the radius is 1.
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Fig. 5: Geodesic sphere of radius 2.

3 Translation curves and spheres

A Riemannian manifold with a transitive group of isome-
tries is called homogeneous. In a homogeneous space there
are postulated isometries, mapping each point to any point.
Translations can be introduced in a natural way. Consider
a unit vector at the origin. Translations, postulated at the
beginning carry this vector to any point by its tangent map-
ping. If a curvet 7→ (x(t),y(t),z(t)) has just the translated
vector as tangent vector in each point, then the curve is
called atranslation curve. This assumption leads to a sys-
tem of first order differential equations, thus translation
curves are simpler than geodesics and differ from them in
most cases (except in spaces of constant curvature).

From [3] we have already known the solution of the above
defined system

ẋ(t) = ue−z(t) ,

ẏ(t) = vez(t) ,

ż(t) = w ,

of differential equation which holds for a curve starting at
the origin in direction(u,v,w):

x(t) = − u
w

(

e−wt −1
)

.

y(t) =
v
w

(

ewt −1
)

,

z(t) = wt ,

.
In the following -as illustration- we show how a translation
curve looks like.
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00,10,20,30,40,50,60,7

Fig. 6:Translation curve with the same initial velocity pa-
rameters as for geodesics above, (u= 0.9 and v=
0.25) in the parameter interval t∈ [0,2]. The first
picture shows the curve in a general view, the other
from the direction of z-axis.
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With unit velocity translation curves we can define the
translation sphereof radiusr with centre in the origin of
usual longitude and altidude parametersϕ andϑ, respec-
tively ( [3]):

u = cosϑcosϕ −π ≤ ϕ ≤ π

v = cosϑsinϕ − π
2
≤ ϑ ≤ π

2
w = sinϑ ;

x(ϑ,ϕ) = −cotϑcosϕ
(

e−r sinϑ −1
)

y(ϑ,ϕ) = cotϑsinϕ
(

er sinϑ −1
)

z(ϑ,ϕ) = r sinϑ .

As illustrations we give the following nice pictures.
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Fig. 7: Translation sphere of radius 0.1. The first picture shows thesphere in a general view, then from the direction of
axes z, y and x, respectively.
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Fig. 8: The same arrangement as above but now the radius is 1.
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Fig. 9: Translation sphere of radius 2.
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ABSTRACT

In this study, we generalize the concept of α− distance

which contains both of Taxicab distance and Chinese

Checker distance as special cases to n−dimensional space.
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Poopćenje α−udaljenosti u n−dimenzionalnom
prostoru

SAŽETAK

U članku se poopćuje pojam α− udaljenosti koji taxi

udaljenost i CC-udaljenost sadrži kao posebne slučajeve

u n−dimenzionalnom prostoru.

Ključne riječi: Taxi udaljenost, CC-udaljenost,

α-udaljenost, metrika, neeuklidska geometrija

Tian [9] gave a generalization of both Taxicab and Chi-
nese Checker distances in the plane, and named it as
α−distance. In [6],α−distance have been extended to
three dimensional space. In this work the concept of
α−distance is generalized ton−dimensional space.

In the following definition, we introduce a family of dis-
tances inRn, which include Taxicab and Chinese Checker
distances as special cases.

Definition:

Let P1 = (x1,x2, . . . ,xn) and P2 = (y1,y2, . . . ,yn) be two
points in R

n. If

∆P1P2 = max{|x1− y1| , |x2− y2| , . . . , |xn − yn|} =
∣

∣x j − y j
∣

∣

and

δP1P2 = ∑
i∈I

|xi − yi| , I = {1,2, . . . ,n}\ { j} ,

then the function dα : R
n ×R

n → R such that

dα(P1,P2) = ∆P1P2 +(secα− tanα)δP1P2, α ∈ [0,π/4],

is called generalized α−distance between points P1 and
P2.

Generalized Taxicab and Chinese Checker distances be-
tween points P1 and P2 in R

n are dT (P1,P2) = ∆P1P2 +δP1P2

and dc(P1,P2) = ∆P1P2 +(
√

2−1)δP1P2, respectively.

(See [1], [2], [3], [4], [5], [8]).

Notice that

d0(P1,P2) = dT (P1,P2) and d π
4
(P1,P2) = dc(P1,P2).

Also, if δP1P2 > 0, then for allα ∈ (0,π/4),

dE(P1,P2) < dc(P1,P2) < dα(P1,P2) < dT (P1,P2),

where dE , dc and dT stand for the Euclidean, Chinese

Checker and Taxicab distances, respectively.

Further, ifδP1P2 = 0, thenP1 andP2 lie on a line which is

parallel to one of coordinate axes, and for allα ∈ [0,π/4],

dc(P1,P2) = dα(P1,P2) = dT (P1,P2) = dE(P1,P2).

Let l be a line throughP1 and parallel tojth-coordinate

axis andl1, . . . , ln denote lines each of which is parallel to

a coordinate axis distinct fromjth-axis. Geometrically, the

shortest way between the pointsP1 andP2 is the union of

a line segment parallel tol j and line segments each mak-

ing α angle with one ofl1, . . . , ln, as shown in Figure 1.

Thus, the shortest distancedα from P1 to P2 is sum of the

Euclidean lengths of suchn line segments.
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Figure 1

The next two propositions follow directly from the defini-
tion of the generalizedα−distance.

Proposition 1.

The generalized α−distance is invariant under all transla-
tion in R

n. That is, T : R
n → R

n, where
T (x1,x2, . . . ,xn)=(x1 + a1,x2 + a2, . . . ,xn + an), ai ∈ R,
does not change the distance between any two points in R

n.

Proposition 2.

Let P1 = (x1,x2, . . . ,xn) and P2 = (y1,y2, . . . ,yn) be two
points in R

n. If ∆P1P2 =
∣

∣x j1 − y j1

∣

∣ for j1 ∈ {1,2, . . . ,n},
then

∣

∣x j1 − y j1

∣

∣+(secα− tanα) ∑
i∈I

|xi − yi| ≥

≥
∣

∣x j2 − y j2

∣

∣+(secα− tanα) ∑
i∈Ip

|xi − yi| ,

for I = {1,2, . . . ,n}\{ j1}, Ip = {1,2, . . . ,n}\{ j2}, j2 ∈ I
and α ∈ [0,π/4] .

Proof: Let P1=(x1,x2, . . . ,xn) andP2=(y1,y2, . . . ,yn).
If ∆P1P2=

∣

∣x j1 − y j1

∣

∣,
then a =

∣

∣x j1 − y j1

∣

∣+(secα− tanα) ∑
i∈I

|xi − yi| .

Let b =
∣

∣x j2 − y j2

∣

∣+(secα− tanα) ∑
i∈Ip

|xi − yi| , for j2 ∈ I.

a−b =
∣

∣x j1 − y j1

∣

∣+(secα− tanα)∑
i∈I

|xi − yi|−

−
∣

∣x j2 − y j2

∣

∣− (secα- tanα) ∑
i∈Ip

|xi − yi|

=
∣

∣x j1 − y j1

∣

∣+(secα− tanα)
∣

∣x j2 − y j2

∣

∣−
−

∣

∣x j2 − y j2

∣

∣− (secα− tanα)
∣

∣x j1 − y j1

∣

∣

= (1− (secα− tanα))(
∣

∣x j1 − y j1

∣

∣−
∣

∣x j2 − y j2

∣

∣).

Notice that(1−(secα− tanα))≥ 0 for all α ∈ [0,π/4] and

(
∣

∣x j1 − y j1

∣

∣−
∣

∣x j2 − y j2

∣

∣) ≥ 0. Thusa−b ≥ 0.

That is,
∣

∣x j1 − y j1

∣

∣+(secα− tanα) ∑
i∈I

|xi − yi| ≥

≥
∣

∣x j2 − y j2

∣

∣+(secα− tanα) ∑
i∈Ip

|xi − yi|

for I = {1,2, . . . ,n}\{ j1} , Ip = {1,2, . . . ,n}\{ j2} , j2 ∈ I

andα ∈ [0,π/4] .

The following theorem shows that generalizedα−distance

is a metric.

Theorem 3.

For each α ∈ [0,π/4], generalized α−distance determines

a metric for R
n.

Proof: We have to show thatdα is positive definite and

symmetric, anddα holds triangle inequality. LetP1 =

(x1,x2, . . . ,xn), P2 = (y1,y2, . . . ,yn) andP3 = (z1,z2, . . . ,zn)

be three points inRn. Generalizedα−distance between

points P1 and P2 is dα(P1,P2) = ∆P1P2 + (secα −
tanα)δP1P2, α ∈ [0,π/4].

dα(P1,P2)≥ 0 since|xi − yi| ≥ 0 and(secα− tanα)≥ 0 for

eachα ∈ [0,π/4]. Obviously,dα(P1,P2) = 0 if and only if

P1 = P2. Sodα is positive definite.

Clearly dα(P1,P2) = dα(P2,P1) follows from |xi − yi| =

|yi − xi| . That is,dα is symmetric.

Now, we try to prove thatdα(P1,P2) ≤ dα(P1,P3) +

dα(P3,P2) for all P1,P2,P3 ∈ R
n andα ∈ [0,π/4]. For each

α ∈ [0,π/4], andI={1,2, . . . ,n}\ { j} ,

dα(P1,P2) =
∣

∣x j − y j
∣

∣+(secα− tanα)∑
i∈I

|xi − yi|

=
∣

∣x j − z j + z j − y j
∣

∣+

+(secα− tanα)∑
i∈I

|xi − zi + zi − yi|

≤
∣

∣x j − z j
∣

∣+
∣

∣z j − y j
∣

∣+

+(secα− tanα)∑
i∈I

(|xi − zi|+ |zi − yi|)

= k.

One can easily see thatdα satisfies the triangle inequality

by examining the following cases:

Case I: If
∣

∣x j − z j
∣

∣ ≥ |xi − zi| and
∣

∣z j − y j
∣

∣ ≥ |zi − yi|,
i, j ∈ {1,2, . . . ,n} , i 6= j, then for eachα ∈ [0,π/4], and

34
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I = {1,2, . . . ,n}\ { j} ,

dα(P1,P2) ≤ k

=
∣

∣x j − z j
∣

∣+
∣

∣z j − y j
∣

∣+

+(secα− tanα)∑
i∈I

(|xi − zi|+ |zi − yi|)

=
∣

∣x j − z j
∣

∣+(secα− tanα)∑
i∈I

|xi − zi|+

+
∣

∣z j − y j
∣

∣+(secα− tanα)∑
i∈I

|zi − yi|

= dα(P1,P3)+ dα(P3,P2).

Case II: If
∣

∣x j − z j
∣

∣ ≥ |xi − zi| and
∣

∣z j − y j
∣

∣ ≤ |zi − yi| ,
i, j ∈ {1,2, . . . ,n} , i 6= j, then there are two possible situa-
tions:

(i) Let
∣

∣x j − z j
∣

∣+
∣

∣z j − y j
∣

∣ ≥ |xi − zi|+ |zi − yi| . Then for
eachα ∈ [0,π/4], andI = {1,2, . . . ,n}\ { j} ,

dα(P1,P2) ≤ k

=
∣

∣x j − z j
∣

∣+
∣

∣z j − y j
∣

∣+

+(secα− tanα)∑
i∈I

(|xi − zi|+ |zi − yi|)

=
∣

∣x j − z j
∣

∣+(secα− tanα)∑
i∈I

|xi − zi|+

+
∣

∣z j − y j
∣

∣+(secα− tanα)∑
i∈I

|zi − yi|

= dα(P1,P3)+
∣

∣z j − y j
∣

∣+

+(secα− tanα)∑
i∈I

|zi − yi|

≤ dα(P1,P3)+ dα(P3,P2),

where
∣

∣z j − y j
∣

∣ + (secα − tanα) ∑
i∈I

|zi − yi| ≤ dα(P3,P2)

because of Proposition 2.

(ii) Let
∣

∣x j − z j
∣

∣+
∣

∣z j − y j
∣

∣ ≤ |xi − zi|+ |zi − yi| . One can
easily give a proof for the situation (ii) as in situation (i).

Case III: If
∣

∣x j − z j
∣

∣ ≤ |xi − zi| and
∣

∣z j − y j
∣

∣ ≥ |zi − yi|,
i, j ∈ {1,2, . . . ,n} , i 6= j, then there are two possible situa-
tions:

(i) Let
∣

∣x j − z j
∣

∣+
∣

∣z j − y j
∣

∣ ≥ |xi − zi|+ |zi − yi|.
(ii) Let

∣

∣x j − z j
∣

∣+
∣

∣z j − y j
∣

∣ ≤ |xi − zi|+ |zi − yi|.
One can easily give a proof for the Case III as in the Case
II.
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Eskişehir, Türkiye

35



�



KoG•10–2006 G. Wallner: Geometry of Real Time Shadows

Professional paper

Accepted 4. 12. 2006.
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Geometry of Real Time Shadows

ABSTRACT

Shadows provide important visual hints about the spatial

relationship between objects. Shadow volumes are one

way to generate sophisticated shadows for use in real time

environments. This paper focuses on the geometric as-

pects which are involved in the creation of the shadow

volume. Speed up techniques like shaders and dual space

approaches for silhouette determination are discussed. Fi-

nally the application of the described methods in a software

for shadow profile calculation is explained.

Key words: Shadow volumes, Dual space, Silhouette

determination, Shader, Real time
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Geometrija sjenâ u realnom vremenu

SAŽETAK

Sjene pružaju važne vizualne informacije o prostornom

odnosu medu objektima. Tijelo sjene je jedan način kako

generirati profinjene sjene za prkaze u realnom vremenu.

U ovom članku usredotočilo se na geometrijski aspekt

uključen u stvaranje tijela sjene. Razmatraju se brze i

efikasne tehnike za odred-ivanje rastavnice preko dva pris-

tupa: dualnog prostora i programa za sjenčanje (shadera).

Na kraju je prikazana primjena opisanih metoda u softveru

za odred-ivanje oblika sjene.

Ključne riječi: tijelo sjene, dualni prostor, odred-ivanje ras-

tavnice, program za sjenčanje, realno vrijeme

1 Introduction

Shadows are an important part in computer graphics be-
cause they can reveal information that otherwise would not
be ascertainable. Foremost, they reveal the spatial relation-
ship between objects in the scene. They also disclose new
angles on an object that otherwise might not be visible and
they can also indicate the presence of off-screen objects.
These and other visual functions of shadows in computer
graphics are described by Birn in [5].

Shadow volumes were first proposed by Crow in 1977 [8].
With the advent of modern day computer graphic cards,
shadow volumes are now possible in real time. Heidmann
[14] adapted Crow’s algorithm to hardware acceleration.
His method is now known as the z-pass method (because
the stencil buffer is incremented/decrementedwhen a poly-
gon passes the depth test). However, the z-pass method
does not work correctly if the near clipping plane inter-
sects the shadow volume. Carmack [6] solved the prob-
lem by using z-fail testing (the stencil buffer is increment-
ed/decremented when a polygon fails the depth test). The
z-fail method still yields incorrect results if the shadow vol-
ume is intersected by the far clipping plane. This problem
can be circumvented by moving the far clipping plane to
infinity, as proposed by [9].

Shadow maps (introduced by [26]) are image based alter-
natives to shadow volumes (which operate on the object

geometry). In the meantime several different shadow map
algorithms have been developed. Both methods have their
benefits and drawbacks. For a comparison of the pros and
cons of both methods see for example [25].

”Classic” shadow volume algorithms create hard shadows.
A shadow region is divided into two parts: the region
which is fully in shadow (umbra) and the region which is
partially in shadow (penumbra). Hard shadows only con-
sist of the umbra area. Soft shadow volume algorithms
have been developed among others by Ulf Assarsson and
Tomas Akenine-Möller [21, 1].

2 Assumptions and Definitions

The shadow volume algorithm requires that the shadow
casting objects must be a 2-manifold polygon mesh and
free of non-planar polygons. 2-manifold means that every
edge of the mesh must be shared exactly by two polygons.
It is also useful to restrict oneself to triangular meshes, be-
cause modern graphics hardware is optimized for triangle
rendering.

Furthermore, all triangles must have the same winding
order. For the following discussion a counter clockwise
winding order and outward pointing normals are assumed.

A silhouette edge is an edge adjacent to one front-facing
and one back-facing polygon. A polygon is called front-
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Figure 1:The z-pass method. The values at the end of the
rays represent the values left in the stencil buffer. Note
that the stencil value of the leftmost ray is wrong due to
the clipping of the shadow volume of the sphere at the
near clipping plane.

facing with respect to the light if the dot-product of its nor-
mal and the vector from the light position and a point on
the polygon is positive. Respectively a polygon is called
back-facing with respect to the light if the dot-product is
negative.

A border edge is an edge which is only adjacent to one
face (which implies that the mesh is open). It should be
noted that we can handle open meshes if we treat border
edges as part of the silhouette. The silhouette is the set of
all silhouette edges (and border edges).

3 Overview

I will first give an overview of the z-pass algorithm and
then point out the differences with respect to the z-fail al-
gorithm. The basic concept [...] is to use the stencil buffer
as a masking mechanism to prevent pixels in shadow from
being drawn during the render pass for a particular light
source [17]. First of all the stencil buffer is initialized with
zero and the z-buffer is initialized with the depth values
of the visible objects during a first rendering pass. In this
pass only light-independent attributes are considered (e.g.
ambient light). Then the shadow volume is rendered with
writes to the color buffer and depth buffer disabled. This
is usually done in two steps. First, the front faces of the
shadow volume (with respect to the camera position) are
rendered and the stencil buffer is incremented each time
the fragment passes the depth test. Second, the back faces
are rendered. This time decrementing the value in the sten-
cil buffer when a fragment passes the depth test.

As shown in figure 1, this leaves non-zero values in the
stencil buffer wherever the shadow volume intersects a

Figure 2:The z-fail method. The values at the intersection
of the ray and the near clipping plane represent the values
left in the stencil buffer. This time the stencil value for the
ray passing through the sphere is correct.

visible object. Figure 1 in addition shows why this ap-
proach fails if the shadow volume intersects the near clip-
ping plane.

As noted by [3] the front faces must be rendered before
the back facing polygons to avoid shadow counting over-
flow. That is, because under OpenGL the result of the
increment and decrement functions is clamped to lie be-
tween 0 and the maximum unsigned integer value (2n−1
if the stencil buffer holdsn bits) [22]. However, render-
ing the shadow volume geometry twice is a suboptimal
solution. The OpenGL extension EXTstencil two side
[11] allows separate stencil states for front faces and back
faces to be specified simultaneously. Therefore front faces
as well as back faces can be rendered at once. Though
this time it is not guaranteed that the front facing poly-
gons will be rendered before the back faces. Consequently
the feasibility exists that the stencil value for a particular
pixel is decremented before it is incremented. We can ac-
count for that option by using another OpenGL extension,
namely EXTstencilwrap [12], which allows stencil val-
ues to wrap when they exceed the maximum and minimum
stencil values.

Several authors [4, 3, 6] proposed methods to cap the
shadow volume at the near plane. However, these are com-
putationally expensive and they have robustness problems.

Carmack [6] and others therefore suggested the z-fail algo-
rithm. Instead of counting the shadow faces in front of a
particular pixel, the shadow faces behind are counted. This
time the near clipping plane problem is avoided because
shadow volume geometry between the eye and the pixel
is nonrelevant. Figure 2 shows the z-fail approach. As
already mentioned in the introduction the z-fail approach
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moves the near clipping plane problem to the far plane,
which can be prohibited by using an infinite projection ma-
trix (see section 6).

4 Silhouette Detection

To calculate the shadow volume, we first have to determine
the silhouette of the shadow casting object. The so-called
brute force method for detecting silhouette edges is to loop
through all edges and check the dot-product of the adjacent
triangles. Since silhouette detection is one of the two major
bottlenecks (beside fill rate consumption), as pointed out
by [16], it is appropriate to use more sophisticated meth-
ods. [2] developed a dual space approach for silhouette
extraction in 3D and [15] used a similar method but moved
to four dimensions. Most recently [24] presented a paper
about silhouette extraction in Hough space.

Because [15] are concerned with non photorealastic ren-
dering, they determine the silhouette with respect to the
viewpoint. However, in case of shadows the silhouette de-
pends on the light position. Therefore the viewpoint must
be substituted with the light position. The algorithm in
[15] is based on the geometric concept of duality in a pro-
jective space and the following characterization of the sil-
houette: IfL is the homogeneous light position, the set of
silhouette points determines a general coneC (with apex
L ) tangent to the differentiable surfaceM. If L ′ is the im-
age plane ofL when applying the duality map, the image
C′ of C is the intersection of the planeL ′ with the dual
surfaceM′. C′ can be identified with the silhouette set of
surfaceM. A point v = (vx,vy,vz,1) of M belongs to the
silhouette set if(a− v) ·n = 0, wheren = (nx,ny,nz,0) is
the unit normal vector to M atv anda = (ax,ay,az,1) is
a point on the tangent plane atv. The tangent plane atv
is mapped onto a dual pointv′ = (vx,vy,vz,−v ·n). There-
fore the silhouette set ofM is characterized by the equation
L ·v′ = (L −v) ·n = 0. Consequently, the problem of find-
ing the silhouette of a differentiable surface is reduced to
the problem of intersecting a plane with a surface.

Since I am concerned with polyhedral surfaces the prob-
lem can be reformulated in a way as described by [15].
The dual surface is built by mapping each vertexv of the
mesh onto a homogeneous pointv′ = (vx,vy,vz,−(v ·n)).
The dual surface has the same connectivity but different
vertex positions. A dual edgee′ of an edgee= (v1,v2) is
a tuple(v′1,v

′
2). An edgee belongs to the set of silhouette

edges ifL · v′1 >= 0 andL · v′2 < 0 or vice versa. Each
v′ is then normalized (using the Euclidean norm) to make
sure that each point of the dual surface lies inside the unit
hypercube. This allows us to store each dual edge in a 4D
variant of an octtree (I will call it hextree in the further

discussion) as pointed out by [7]. At the highest level this
hextree ranges from(−1,−1,−1,−1) to (1,1,1,1). The
space can be repeatedly divided into 16 smaller hextrees
until a small enough partition is reached. A dual edgee′ is
then inserted into the smallest subcube which enclosesv′1
as well asv′2.

Instead of using two bounding boxes per subcube to de-
termine if the dual edges have to be verified [7] I use a
different approach. For testing if an AABB1 and a plane
intersect, the box diagonal which is most aligned with the
normal of the plane has to be found first. Second the di-
agonals vertices (vmin andvmax) are inserted into the plane
equation. If the signs of the results differ or at least one
of them is zero, then the plane intersects the box [20].
[20] also points out that the two vertices can be found di-
rectly. The signs of the components of the plane normal
are used as a bit mask. If this mask is interpreted as a num-
ber it can be used as index to an array of AABB vertices.
This approach can easily be extended to four dimensions.
Each of the 16 vertices of a 4D cube is stored in an ar-
ray so that the minimum vertex is located at index 0 and
the maximum vertex at position 15. Instead of the plane
normal we interpret the signs of the components ofL as
a bit mask. The indexi of vmin can then be calculated as
i = 8 ·sgn(Lx)+4 ·sgn(Ly)+2 ·sgn(Lz)+sgn(Lh) where

sgn(x) =

{

0 x >= 0

1 otherwise.

The vmax vertex can be found by inverting the bit mask.
The dual edges of a subcube must only be tested ifL ·
vmin >= 0 andL ·vmax < 0 or vice versa.

Building the dual surface and inserting the dual edges into
the hextree can be done once in a preprocessing step as
long as the connectivity of the object does not change. Fur-
thermore silhouette detection must only be performed if
the object position changes with respect to the light posi-
tion.

5 Shadow Volume Construction

Once the set of silhouette edges is determined the edges
must be extruded to form the shadow volume. As described
by [17], no matter what finite distance silhouette edges are
extruded, it is still possible that the shadow volume does
not reach far enough to cast a shadow on every object in
the scene that should intersect the volume. This problem
worsens when the light source is very near to the shadow
casting object, but it can be circumvented by using an infi-
nite projection matrix. How this matrix can be obtained is
described in section 6.

1AABB stands for Axis Aligned Bounding Box. Assuming an AABB is valid in our case because the hextree is axis aligned.
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Figure 3: An Object O is casting a shadow onto the near
clip plane since it partially intersects the near clip volume
(shaded)

To make the z-fail algorithm work correctly, the shadow
volume must be a closed volume where all polygons must
have a consistent winding order. A complete shadow vol-
ume consists of: (1) the front cap (consisting of all front-
facing polygons), (2) the extruded silhouette edges and (3)
the back cap. It is notable that the extrusion of the ge-
ometry depends on the light source. For a point light the
vertices of the silhouette edge must be extruded to infinity
along the vector from the location of the point light to the
vertex (see figure 4). Ifv = (vx,vy,vz,1) is the position of
the vertex to be extruded andL is the position of the point
light then the extruded vertexve = (vx − Lx,vy − Ly,vz−
Lz,0).

For a directional light all extruded points converge to
a single point in infinity (see figure 4) at position
(−Lx,−Ly,−Lz,0). This implies that the back cap is not
necessary for directional light sources. The back cap con-
ventionally consisted of all back-facing polygons projected
away from the light [9, 17]. But since the back cap is at in-
finity the shape does not matter [19]. The only constrain
which remains is that the back cap must actually close the
volume. This can be achieved with a simple triangle fan
constructed from the extruded silhouette edges [19, 16].

The z-pass algorithm doesn’t use caps, therefore the incor-
rect results if the shadow volume intersects the near clip
plane (see [9] for details) or the viewpoint is inside the
volume. From this point it is clear that the z-fail method is

computationally more expensive and should only be used
when necessary. To determine whether the shadow volume
is clipped by the near plane the near clip volume has to be
constructed. The near clip volume is bound by the planes
which connect the near rectangle to the light position, as
shown in figure 3. The near rectangle is the area cut out of
the near plane by the four side planes of the view frustum.
Only an object which is inside this near clip volume can
cast a shadow onto the near clipping plane. For a compre-
hensive description see [17].

Silhouette edge extrusion can now be done on graphics
hardware to remove the burden from the CPU. The follow-
ing Cg vertex shader extrudes a vertexv = (vx,vy,vz,vw) if
vw = 0 otherwise the position is just passed through.

f l o a t 4 l i g h t T o V e r t e x = IN . p o s i t i o n−
l i g h t P o s ;

f l o a t m = 1 − IN . p o s i t i o n .w;
f l o a t 4 outx = IN . p o s i t i o n∗(1−m) +

l i g h t T o V e r t e x∗m;
outx .w = IN . p o s i t i o n .w;

/ / t r a n s f o r m p o s i t i o n t o homogeneous c l i p
space

OUT. HPOS = mul ( ModelViewProj , outx ) ;

IN. position is the vertex coordinate andlightPos is the po-
sition of the point light. If shaders are used, one has
to take care of transforming the vertex position into ho-
mogenous clip space, therefore the multiplication with the
modelview-projection matrix. To make this approach work
correctly, each vertex of the silhouette must be passed
twice to the shader. Once withvw = 1 and once with
vw = 0. The extrusion for a directional light looks simi-
lar.

6 Infinite Projection Matrix

The OpenGL projection matrix is defined as [22]:

P =

∣

∣

∣

∣

∣

∣

∣

∣

∣

2·n
r−l 0 r+l

r−l 0
0 2·n

t−b
t+b
t−b 0

0 0 −( f+n)
f−n

−2· f ·n
f−n

0 0 −1 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

In this matrix f is the distance from the viewer to the far
clip plane, n the distance to the near clip plane and r and l
are the respective distances to the left and right clip plane.
t and b are the distances to the top and bottom clip plane.
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Figure 4:Silhouette extrusion for a point light (left) and for a directional light (right)

We can obtain the infinite projection matrix by calculating
P∞ = lim

f→∞
P which yields

P∞ =

∣

∣

∣

∣

∣

∣

∣

∣

2·n
r−l 0 r+l

r−l 0
0 2·n

t−b
t+b
t−b 0

0 0 −1 −2 ·n
0 0 −1 0

∣

∣

∣

∣

∣

∣

∣

∣

An infinite projection matrix reduces the depth buffer pre-
cision only marginally as pointed out by [9]. However,
if you are concerned about this loss you can use Nvidia’s
NV depthclamp [23] extension. If depth clamping is en-
abled, the near and far clipping plane are disabled for ras-
terizating geometry primitives.

7 Rendering

Here I present the necessary steps to render shadow vol-
umes with OpenGL. First we render the scene with enabled
depth writes, backface culling and with ambient lighting
only (light independent attributes). This guarantees that
the depth buffer is initialized with the correct depth values.
Afterwards we disable writes to the depth buffer and turn
off ambient lighting.

g lEnab le ( GLLIGHTING) ;
g l L i gh tMode l f v (GL LIGHT MODEL AMBIENT ,

ambient ) ;
g lEnab le ( GLDEPTH TEST) ;
g lDepthFunc ( GLLESS) ;
g lEnab le (GLCULL FACE) ;
g l C u l l F a c e (GLBACK) ;

drawScene ( ) ;

glDepthMask (GLFALSE) ;
g l L i gh tMode l f v (GL LIGHT MODEL AMBIENT ,

ze ro ) ;

The stencil mask has to be calculated separately for each
light source.

f o r each l i g h t s o u r c e
{

First we clean the stencil buffer, configure the stencil test
so that it always passes and disable writes to the color
buffer. We will take advantage of two side stencil testing so
that we only have to render the shadow volume of each oc-
cluder once. Therefore the stencil operation is set to incre-
ment and decrement for front- and back-facing polygons
respectively – if the depth test fails. Culling is also turned
off because front as well as back faces must be rendered at
the same time.

g l C l e a r ( GL STENCIL BUFFER BIT ) ;
g lEnab le ( GLSTENCIL TEST) ;
g l S t e n c i l F u n c (GLALWAYS, 0 , ˜ 0 ) ;
g l S t e n c i l M a s k ( ˜ 0 ) ;

g lColorMask (GLFALSE , GL FALSE , GL FALSE ,
GL FALSE) ;

g lAc t i veS tenc i l F aceEXT (GLBACK) ;
g l S t e n c i l O p (GLKEEP , GL INCR WRAP EXT ,

GL KEEP) ;
g lAc t i veS tenc i l F aceEXT (GLFRONT) ;
g l S t e n c i l O p (GLKEEP , GLDECR WRAP EXT,

GL KEEP) ;

g l D i s a b l e (GLCULL FACE) ;
g lEnab le ( GLSTENCIL TEST TWO SIDE EXT ) ;

Now the shadow volume of each occluder in the scene is
rendered. Afterwards culling is turned on and the stencil
test is disabled. At that time the stencil buffer holds the
correct information about which pixels are in shadow and
which aren’t.
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f o r each o c c l u d e r
{

renderShadowVolume ( o c c l u d e r ) ;
}

g lEnab le (GLCULL FACE) ;
g l D i s a b l e ( GLSTENCIL TEST TWO SIDE EXT ) ;

The whole scene is now rendered again. This time the cur-
rent light is enabled and configured (all light dependent
attributes). Stencil testing is configured so that only pixels
with a zero stencil value are rendered. Equal depth testing
is used so that only visible fragments are updated. Since
this pass adds to the ambient scene already in the color
buffer, additive blending must be enabled as well as writes
to the color buffer. After rendering the scene, blending is
disabled and the depth function is restored to less depth
testing.

g lEnab le ( l i g h t ) ;
c o n f i g u r e L i g h t ( l i g h t ) ;

g lEnab le (GLBLEND) ;
g lB lendFunc (GLONE, GL ONE) ;
glColorMask (GLTRUE , GL TRUE , GL TRUE ,

GL TRUE) ;

g l S t e n c i l F u n c (GLEQUAL, 0 , ˜ 0 ) ;
g l S t e n c i l O p (GLKEEP , GL KEEP , GL KEEP) ;
g lDepthFunc (GLEQUAL) ;

rende rS cene ( ) ;

g l D i s a b l e (GLBLEND) ;
g lDepthFunc ( GLLESS) ;

}

After the above steps have been carried out for all lights,
stencil testing is disabled and writes to the depth buffer are
enabled.

g l D i s a b l e ( GLSTENCIL TEST ) ;
glDepthMask (GLTRUE) ;

8 Application: Shadow Profiles

I have succesfully applied shadow volumes in an applica-
tion for calculating shadow profiles in real time. A shadow
profile shows the cast shadow of an object over a specific
time period. This is, for example, of concern for architects
to find out how long the surroundings are obscured by a
building. After providing the required information needed
for computing the position of the sun2 (latitude, date, time)
and the time period, the shadow profile is calculated.

Scene Number of trianglesa ∼time [ms]
Eiffel Tower 11353 (11155) 4.584
Industry Area 13615 (13585) 7.299

Uniqua Building 182038 (147296) 44.486
Uniqua Building 182038 (182038) 58.666

Table 1: Performance with brute force silhouette detection
aFirst number: total triangles in the scene. Second number: triangles of

shadow casting objects

Scene Number of triangles ∼time [ms]
Eiffel Tower 11353 (11155) 4.236
Industry Area 13615 (13585) 5.799

Uniqua Building 182038 (147296) 39.331
Uniqua Building 182038 (182038) 48.872

Table 2: Performance with dual space silhouette detection

The application can detect the silhouette either by brute
force or with the above described dual space approach. If
the graphics card supports vertex and fragment shaders, sil-
houette extrusion and per pixel lighting is performed on the
GPU. Otherwise the CPU handles the extrusion and stan-
dard OpenGL lighting is used. Double sided stencil testing
is performed if EXTstencil two side is supported. The z-
fail algorithm is only applied if necessary (see section 3).

Figures 5 to 7 show some sample scenes. Table 1 shows the
time needed for brute force silhouette detection for each
scene and table 2 for dual space silhouette detection, re-
spectively. All measurements were taken on a Pentium 4
3.4Ghz processor with 1GB memory. For each scene a
hextree with a fixed depth of four was chosen for the dual
space approach.

9 Future Work

The results show that silhouette detection can greatly im-
prove performance. As future work it would be interest-
ing to see how Hough space silhouette finding [24] can
further speed up the process. At this time no techniques
to reduce fill rate consumption are implemented. Lengyel
[17] describes how OpenGLs scissor rectangle support can
be used to cut down the fill rate penalty for rendering the
shadow volumes. That is because the hardware does not
generate fragments outside the scissor rectangle. The scis-
sor rectangle can be applied on a per light basis or per ge-
ometry basis, as pointed out by [18]. [10] suggest a depth
bounds test for stencil writes. This idea is based on the ob-
servation that some depth values can never be in shadow, so
incrementing and decrementing the stencil buffer is need-
less.

2See [13] for a description of the calculation
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Figure 5:left: Casted shadows of an industry area located at a latitude of 45.2◦ north on September 18th at 3pm. middle:
Visualization of the shadow volumes (yellow). right: The shadow profile of the scene over a time period of three hours
(12pm until 3pm in 30 minutes time steps).

Figure 6:left: Shadow of the Eiffel Tower in Paris (latitude of 48.8◦ north) on September 18th at 2pm. middle: Visualiza-
tion of the shadow volume (yellow) and the silhouette edges (pink). right: Shadow profile over a time period of four hours
(10am until 2pm in 30 minutes intervals).

Figure 7:Proposal for the Uniqua building in Vienna (48.2◦ north) by Hans Hollein. A color was assigned to each structural
component. left: Only the facade (yellow) and the concrete (green) is casting a shadow. middle: The complete building
is casting a shadow. right: The shadow profile over a time period of eight hours (9am until 5pm in 1 hour intervals) on
September 18th.
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10 Conclusions

In this paper I have presented the necessary steps for a ro-
bust implementation of stencil shadow volumes. Stencil
shadow volumes suffer mainly from two bottlenecks: (a)
fill rate and (b) silhouette detection. The latter was dis-
cussed in section 4. Modern graphics hardware can take
over computations which formerly had to be performed on
the CPU, e.g. silhouette extraction. Code snippets showed
how stencil shadows can be implemented with OpenGL.
Extensions to OpenGL provide further ways to improve
performance.
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ABSTRACT

This paper describes development of interactive web ap-

plication designed for coordinate’s recalculation within the

celestial coordinate systems. Furthermore, this application

is also a simple tool for the graphical display of the celestial

objects location (coordinates). Recalculation of coordi-

nates and visualization of the celestial coordinate systems

capable of magnification, rotation and perspective change

makes this interactive application suitable for e-learning.
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Primjena webMathematicei LiveGraphics3D
u sfernoj astronomiji

SAŽETAK

U radu je opisana interaktivna internetska aplikacija nami-

jenjena preračunavanju koordinata u nebeskim koordinat-

nim sustavima. Aplikacija je ujedno jednostavan alat

za grafički prikaz položaja (koordinata) nebeskih tijela

uz mogućnost rotacije, povećanja i promjene perspektive

grafičkog prikaza. Preračunavanje koordinata i vizuali-

zacija nebeskih koordinatnih sustava omogućuje primjenu

ove interaktivne aplikacije u e-obrazovanju.

Ključne riječi: nebeski sferni koordinatni sustavi,

preračunavanje koordinata, vizualizacija, webMathemat-

ica, LiveGraphics3D, e-obrazovanje.

1 Uvod

Informacijske i komunikacijske tehnologije (ICT) u suvre-
menim oblicima učenja važno su sredstvo za poboljšanje
kvalitete obrazovanja. Ostvarenjem potrebne infrastruk-
ture (tehnička opremljenost, brze veze za pristup internetu
i sustavi za upravljanje učenjem) stvoren je temelj za pri-
mjenu e-obrazovanja - učenja i podučavanja potpomognu-
tog ICT-eom i internetom [4]. Stručnjaci predvidaju da će
se e-obrazovanje na različite načine upotrebljavati u svim
vidovima obrazovanja.

Akademske godine 2005/06, tadašnji studenti treće go-
dine Geodetskog fakulteta u Zagrebu, izradili su rad [1]
nagrad-en Dekanovom nagradom. Na temelju tog rada
izradena je internetska interaktivna (on-line) aplikacija
pomoću koje korisnici mogu jednostavno i trenutačno
preračunati koordinate u različitim nebeskim koordinatnim
sustavima i grafički ih prikazati. Osim toga, naknadno
je izrad-ena i interaktivna aplikacija koja omogućuje
vizualizaciju odabranog nebeskog koordinatnog sustava uz
mogućnosti rotacije, povećanja, promjene perspektive i
pomicanja/mijenjanja položaja nebeskog tijela. Aplikacija

je razvijena uMathematici i webMathematicii pomoću
Java applet-aLiveGraphics3D.

Aplikacija je izrad-ena sa ciljem poboljšanje kvalitete na-
stave iz geodetske astronomije na Geodetskom fakultetu u
Zagrebu.

2 Mathematicai webMathematica

Za točnost grafičkog prikaza nebeske sfere s traženim
kružnicama programski jezik mora sadržavati vektorski
način prikaza grafičkih elemenata u trodimenzionalnom
prostoru, odredene naredbe potrebne za pretvorbu ko-
ordinata iz sfernog u Kartezijev koordinatni sustav te
mogućnost implementacije grafičkog prikaza i rješenja na
internetu.

Mathematica je softver tvrtke Wolfram Research koji
u sebi sadrži numeričko i simboličko računalo, grafički
sustav, programski jezik, dokumentaciju i naprednu
mogućnost spajanja s drugim aplikacijama. Jedna od
takvih aplikacija jewebMathematica, još jedan proizvod
tvrtke Wolfram Research [5].
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webMathematicaomogućuje izvršavanje interaktivnih
računanja i vizualizacija na internetskim stranicama, a
takoder i brzo stvaranje te distribuiranje rješenja računanja
u mreži servera na kojem je postavljena. Nadalje, sadrži
mogućnost računanja funkcija za razvijanje tehničkih
rješenja koja dopuštaju izradu tehničkog mrežnog servisa
koji uključuje numeričke, simboličke i grafičke aplikacije
za rješavanje svakodnevnih računalnih problema.

3 Izrada programskog kôda i
implementacija na internet

Početnu ideju o prikazu nebeske sfere kao cjelovitog ob-
jekta (mogućnost koju podržava programski jezikMathe-
matice, Sphere[r,m,n]), zamjenjujemo prikazom nebeske
sfere konturnom kružnicom u prostoru, zbog lakše ma-
nipulacije dijelovima grafičkog prikaza. Toj kružnici
pridružujemo pravac zenita (pravac koji spaja zenit i nadir),
pravac nebeske ili svjetske osi, te ravninu nebeskog ekva-
tora. Zenit je točka nebeske sfere, točno iznad motritelja
koji se nalazi u središtu nebeske sfere.Nadir je točka
nebeske sfere dijametralno suprotna zenitu.Nebeska os
je zamišljena os koja nebesku sferu probada u sjevernom
i južnom nebeskom polu, a na kojoj leži Zemljina os
rotacije. Ravnina nebeskog ekvatoraje ravnina okomita
na nebesku os i u njoj leži stajalište. [3]

Sve ravnine ili kružnice na grafičkom prikazu dobivene su
pomoću trigonometrijskih funkcija, a iscrtane su pomoću
malih dužina čije granične točke odredujemo pomicanjem
kuta na nebeskoj sferi za po jedan stupanj.

Slijedi kôd za iscrtavanje konture horizonta (horizont jeve-
lika kružnica nebeske sfere koja nastaje presjekom ravnine
koja prolazi stajalištem, a okomita je na pravac zenita).

x2=Table[Cos[i*Pi/180]*Cos[0],{i,-1,360}];

y2=Table[Sin[i*Pi/180]*Cos[0],{i,-1,360}];

z2=Table[Sin[0],{i,-1,360}];

horizont1=Transpose[{x2,y2,z2}];

horizont=Graphics3D[{AbsoluteThickness[2],

RGBColor[0,0.5,0],Line[horizont1]}]

U ispisanom kôdux2, y2 i z2 su liste koordinata točaka na
konturi horizonta. Lista prvih 5 članovax koordinate:

{cos[
π

180
],1,cos[

π
180

],cos[
π
90

],cos[
π
60

]}.

Lista prvih 5 članovay koordinate:

{−sin[
π

180
],0,sin[

π
180

],sin[
π
90

],sin[
π
60

]}.

Lista prvih 5 članovaz koordinate:

{0,0,0,0,0}.

Vizualizacija je moguća tek kada sve tri koordinate iz
sve tri liste spojimo u uredene triplete funkcijomTrans-
pose. Horizont iscrtavamo spajanjem tih točaka dužinama.
Prikazani su tripleti prvih pet točaka:

{cos[
π

180
],−sin[

π
180

],0},

{1,0,0},

{cos[
π

180
],sin[

π
180

],0},

{cos[
π
90

],sin[
π
90

],0},

{cos[
π
60

],sin[
π
60

],0}.

Zadatak je prikazati nebesku sferu s ishodištem u sta-
jališnoj točki, glavne točke, pravce i kružnice nebeske
sfere i položaj nebeskog tijela sa zadanim/izračunanim
sfernim koordinatama. Koordinate nebeskih tijela mogu
biti zadane u različitim koordinatnim sustavima. Ovom
aplikacijom moguća su preračunavanja koordinata izmed-u
horizontalnog (A,z), mjesnog ekvatorskog (t,δ) i nebeskog
ekvatorskog (α,δ) koordinatnog sustava.

Malu kružnicu nebeske sfere, paralelnu s ravninom ho-
rizonta, nazivamoalmukantaratom. Sve točke almukan-
tarata jednako su udaljene od točke zenitaZ. Kutnu
udaljenost izmed-u zenita i almukantarata nazivamozen-
itna daljina z. Veliku kružnicu nebeske sfere koja pro-
lazi kroz zenit Z i nadir Z′, a okomita je na horizont
nazivamovertikal. Kut izmed-u stajališnog meridijana i
vertikala (od južne točke horizontaS u smjeru kazaljke
na satu) nazivamoazimutom A. Deklinacijska krǔznica
je velika kružnica nebeske sfere koja prolazi nebeskim
polovimaPN i PS, a okomita je na nebeski ekvator. Kutnu
udaljnost u smjeru zapada uzduž nebeskog ekvatora od
stajališnog meridijana do deklinacijske kružnice zovemo
satnim kutom t. Dnevna paralela je kružnica nebeske
sfere paralelna s nebeskim ekvatorom, a kutnu udaljenost
od nebeskog ekvatora do dnevne paralele nazivamodek-
linacijom δ. Kutnu udaljenost mjerenu u suprotnom sm-
jeru od kazaljke na satu uzduž nebeskog ekvatora, od pro-
ljetnog ekvinocija (presjecište ekliptike i nebeskog ekva-
tora) do satne kružnice, nazivamorektascenzijomα. Sta-
jališni meridijanje velika kružnica nebeske sfere koja pro-
lazi nebeskim polovima, zenitom i nadirom, najvišomQ i
najnižomQ′ točkom nebeskog ekvatora te točkom sjevera
N i jugaS.

Neke kružnice nije bilo jednostavno matematički defini-
rati, na primjer kružnicu satnog kuta. To je izvedeno
pomoću središta kružnice i dviju njenih točaka čije ko-
ordinate možemo jednostavno trigonometrijski definirati.
Ravnina kružnice odred-ena je radij vektorima točaka na
kružnici iz njenog središta.

Slijedi dio koda za iscrtavanje kružnice satnog kuta.
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n1=Cross[r1,r3];

nm1=Sqrt[(n1[[1]])^2+(n1[[2]])^2+(n1[[3]])^2];

n01=n1/nm1; ar=r1; br=Cross[n01,ar];

ar1=Sqrt[(ar[[1]])^2+(ar[[2]])^2+(ar[[3]])^2];

br1=Sqrt[(br[[1]])^2+(br[[2]])^2+(br[[3]])^2];

a=ar[[1]]*Cos[(i)*Pi/180]+br[[1]]*Sin[(i)*Pi/180];

b=ar[[2]]*Cos[(i)*Pi/180]+br[[2]]*Sin[(i)*Pi/180];

c=ar[[3]]*Cos[(i)*Pi/180]+br[[3]]*Sin[(i)*Pi/180];

x9=Table[a,{i,-1,360}];

y9=Table[b,{i,-1,360}];

z9=Table[c,{i,-1,360}];

satniKUT1=Transpose[{x9,y9,z9}];

satniKUT=

Graphics3D[{RGBColor[1,0,0],Line[satniKUT1]}];

Konačno grafičko rješenje zadatka sadrži ravninu hori-
zonta (zeleno) i ravninu nebeskog ekvatora (ljubičasto),
kružnice zadanih (obojene plavom bojom) i računanih
veličina (obojene crvenom bojom), mjesni meridijan (to
je ujedno i kontura nebeske sfere), pravac zenita (ZZ′)
i nebesku ili svjetsku os (PNPS). Podebljane linije
označavaju zadane ili računane veličine, uz koje stoje slova
koja ih opisuju. Nebeska sfera sadrži oznake za strane svi-
jeta, nebeske polove te položaj zvijezde obojene žutom bo-
jom (Slika 1).

Potrebno je napomenuti da će zadane veličine uvijek biti
obojene plavom, a računane veličine crvenom bojom.
Stoga će na grafičkom rješenju boja pojedinog elementa
(kružnica, dio kružnice, slovo, strelica) ovisiti o vrsti za-
datka.

z

t

AN S

E

W

Z'

Z

PN

PS

Q

Q'

      Opis oznaka

· ravnina horizonta

· ravnina nebeskog ekvatora

· almukantarat 

· zenitna daljina (z)

· vertikal 

· azimut (A)

· deklinacijska kružnica 

· satni kut (t)

· dnevna paralela 

· deklinacija (δ)

· nebesko tijelo (Σ) 

· pravac koji spaja zenit (Z) i nadir (Z')

· pravac koji spaja sjeverni (P
N
) i južni pol (P

S
)

· najviša (Q) i najniža (Q') točka nebeskog ekvatora 

· glavne strane svijeta (N, W, E, S)

Slika 1
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Nakon izrade programskog kôda uMathematici bilo
je potrebno ostvariti vizualizaciju preko interneta.
Izvršavanje programskog kôdaMathematicepreko inter-
neta (on-line) moguće je samo uz upotrebuwebMathema-
tice.

Kako bi programski kôd bio prepoznatljivwebMathe-
matici, koja predstavlja vezu izmedu web servera i pro-
gramaMathematica, potrebno ga je preraditi te preba-
citi u jsp (JavaServer Pages) datoteku. Na taj način
omogućujemo serveru da uz pomoćwebMathematice
izdvoji iz stranice matematičke naredbe i proslijedi ih
Mathematici, koja serveru vraća rezultat. Dobiveni rezul-

tat, prikazan na internetskoj stranici, namijenjen je kori-

sniku.

Aplikacija za preračunavanje koordinata i njihovu vizuali-

zaciju nalazi se na adresihttp://webmath.grad.hr:8180/

webMathematica/geodezija/stranica/ga.html.1

Na stranici nalazimo i legendu - opis i objašnjenje boja

linija, točaka, slova, šrafura i strelica. Takoder i upute

za rukovanje trodimenzionalnim grafičkim objektom kao

npr. povećanje i smanjenje, promjena perspektive i rotacija

(Slika 2).

Slika 2

1Autori zahvaljuju dr. sc. Sonji Gorjanc i Vladimiru Beniću, dipl. ing. mat. s Gradevinskog fakulteta Sveučilišta u Zagrebu koji su im omogućili
realizaciju projekta na web serveru njihovog fakulteta.
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4 Vizualizacija nebeskih koordinatnih
sustava

Za vizualizaciju pojedinačnih nebeskih koordinatnih susta-
va (bez preračunavanja koordinata) upotrebljavan je Java
appletLiveGraphics3D. S njime možemo ubrzati proces
stvaranja zahtjevnijih interaktivnih prikaza te definirati
kompleksne manipulacije nad njima, bez potrebe kreiranja
grafičkog sadržaja u Javi, Flash-u ili nekom drugom pro-
gramskom jeziku.
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Slika 3a

Statičan prikaz odabranog koordinatnog sustava (Slika 3a)
nije osobito zanimljiv. Ono što ga čini “živim” (Slike
3b, 3c i 3d) je mogućnost pomicanja točke (koja pred-
stavlja zvijezdu) neovisno o cijelom prikazu, ali ovisno
o kružnicama koje ta točka odreduje (vertikal i almukan-
tarat). Sljedeće kontrole to omogućuju (“Click” pred-
stavlja pritisak lijevog gumba miša):

• Click na žutu točku i njenim pomicanjem mijenjamo
položaj svih kružnica koje ovise o položaju te točke

• Click negdje drugdje i pomicanjem miša rotiramo ci-
jeli prikaz

• Puštanjem gumba miša dok ga pomičemo dovodimo
cijeli prikaz u rotaciju; click bilo gdje na prikazu i
rotacija prestaje

• Pritiskom Shift tipke, click i vertikalnim pomica-
njem miša povećavamo i smanjujemo prikaz

• Pritiskom Shift tipke, click i horizontalnim pomica-
njem miša rotiramo prikaz oko osi okomite na ekran

• Pritiskom tipke Home vraćamo na originalni prikaz
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Slika 3b
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Slika 3c
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Pisanje programa u bilo kojem softveru koji omogućava
ovakvu “živu” vizualizaciju bilo bi vrlo složeno. Pro-
ces stvaranjaLiveGraphics3Dprikaza ne zahtijeva znanje
Jave. Bitno je napomenuti daMathematicanije potrebna
za samu kreacijuLiveGraphics3Dappleta, jer se ulazni
podaci mogu i ručno upisati. No, pomoćuMathematice
lakše je generirati ulazne podatke za složenije objekte.Da
bi izradili takav applet potrebno je datotekulive.jar sa
stranice “LiveGraphics3D Homepage” staviti u isti direk-
torij kao i HTML datoteku koju smo prethodno kreirali.
HTML datoteka treba sadržavati, osim izgleda stranice, i
potreban računalni kôd koji će omogućiti prikaz appleta
[2].

<applet archive="live.jar" code="Live.class"

width="500" height="500">

<param name="INPUT_FILE"

value="pomicanje_fi_z_A.lg3d"/>

<param name="INDEPENDENT_VARIABLES"

value="{xK -> 0.383022,

yK -> 0.663414,

zK -> 0.642788}" />

<param name="DEPENDENT_VARIABLES"

value="{

z -> -(ArcSin[zK]*180/Pi - 90),

A -> ArcCos[xK/(Cos[(90 + z)*Pi/180])]*180/Pi,

zVrijednost-> Round[10*z]/10,

AVrijednost->Round[10*A]/10}" />

</applet>

5 Zaklju čak

Pretraživanje i prikupljanje informacija, rješavanje proble-
ma i samostalno učenje oslanjati će se u budućnosti naj-
većim dijelom na internet. Stoga je vrlo važna primjena
informacijske tehnologije (ICT) u znanstvenim, nastavnim
i drugim aktivnostima.

Razvoj aplikacije za preračunavanje astronomskih koor-
dinata i grafički prikaz rješenja, uz mogućnost rukovanja

grafičkim prikazom (rotacija, povećanje, promjena per-
spektive i drugo), te “živom” vizualizacijom nebeskih ko-
ordinatnih sustava omogućuje primjenu ove interaktivne
aplikacije u e-obrazovanju. Precizno preračunavanje ko-
ordinata u nebeskim koordinatnim sustavima potrebno je i
profesionalnim astronomima ali i naprednim amaterima.
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The art of Tamás F. Farkas
http://www.farkas-tamas.hu/

Tamas F. Farkas has been conducting researches on the boarder between non-traditional geom-
etry and spatial visualisation for 30 years.

His art opened new vistas into an impossible world, partly inhigher dimensions, partly in ge-
ometric structures not realisable even in higher dimensions. Making visible spaces, that are
non-Euclidean, beyond-traditional geometries, multi-dimensional, and not realisable in the real
world, his works attract the interest not only of geometry, but also of physics and crystallogra-
phy, i.e., of sciences searching for the structure of matter

His graphical life-work follows individual paths, he did not join any designated artistic move-
ment, school. The roots of his graphical works go back to different directions. They are fed on
partly from the arts (e.g., Escher), partly from the sciences (e.g., multidimensional geometry,
the world of abstract symmetries).

His works represent the joint beauty of human thinking and manual creativity. His graphical
world is not one of simple play with forms and colours, ratherit is built by grave scientific
regularities.

The shape, composed of continuous quadratic prisms, returning into itself, partly is a self-
imposed visual delimitation, a self-chosen basic unit of a set symbols, partly it determines the
nearly infinite abundance of regularities, what he is able todepict on the plane, within and
beyond the limits of traditional geometry.

His form- world is composed of one of more (2, 3, 4, 6) continuous, closed quadratic prism
lines woven into themselves, each returning into itself. These lines, woven also into each other,
compose a system characterised by an internal regularity. Applying the regularities developed
by himself, he creates more and more complicated structures, within the limits of the representa-
tion in 2 dimensions. At the same time, his forms seem to emerge from the plane into the space
before the spectator’s eyes. These complicated structureskeep their perspicuity and can easily
be surveyed by the general observer, because order and symmetry prevail in them. He applies
most often the 2-, 3-, 4- and 6- fold rotational symmetries, and in certain cases mirror-symmetry
from among the possible geometrical symmetry transformations.

Another cluster of Tamás F. Farkas’ works is manifested in architectural-like graphics. He
follows the road paved by the impossible building representations of M.C. Escher... In his
graphics there appear clear structures, without any reference to a real environment. The pure
geometric shapes make him free to construct a richer form-world. Thus he operates with a
wide set of symmetry transformations, mainly rotations in multiple dimensions. The result is a
fantastic beautiful, imaginary world, much more variegated that our real one, built of impossible
structures. A third cluster of his works, that deserve special mentioning here, is a spatial world,
whose various structures are formed by the rotation of virtual cubic units.

Any catalogue or exhibition can display only a selection from among the spatial variations and
colour world of his graphical units. This beauty, painted byhim on canvas, has been admired
in many exhibitions both in his native country, Hungary, andthe worldwide, from Washington,
D.C. to Israel, and from Japan to Italy.

The different graphics, hyperspace structures by Farkas, being either stairs-like or constructed
by line tracing, allow many interpretations. They were presented in two books dedicated to M.C.
Escher (ed. D. Schattschneider) and in two volumes on visualillusions ( by A . Seckel). Several
issues of the journal Symmetry have been illustrated by his graphics. Logos of the L’Oreal Art
and Science Foundation, the International Symmetry Foundation, and the Symmetry Festival
series are designed by T.F. Farkas.

According to the common belief, this world is too complicated to be represented simply, not
even to attribute an internal structure to the represented objects. The pictorial world of Tamás
F. Farkas breaks this taboo.

His images preserve openness for new developments in science. They evoke associations in the
mind. They generate thoughts in laypeople and inspire ideasin specialist spectators.

He provides us with the appearent illusions that we understand something of nature, although
we are ’only’ enjoying his art.

Extracts from the text by GYÖRGY DARVAS




