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(1,n) Congruences

VLADIMIR BENIC
SONJA GORJANC

(1,n) Congruences
ABSTRACT

The first order algebraic congruences are classified into
two basic classes which depend on their directing curves.
By the method of synthetic geometry, we investigated the
basic properties for each of these classes: the construction
of rays, singularities, decomposition into developable sur-
faces, focal properties and the types of rays. The paper
ends with a short analytical approach, which enables the
visualizations of these congruences in the program Mathe-

(1.,n) kongruencije
SAZETAK

Algebarske kongruencija prvoga reda razvrstane su u dvije
osnovne klase, ovisno o njihovim ravnalicama. Za svaku od
tih klasa, metodologijom sinteti¢ke geometrije, istraZzuju se
osnovna svjstva: konstrukcija zraka, singulariteti, dekom-
pozicija na razvojne plohe, Zari$ne osobine te vrste zraka.
Na kraju se daje i kratki analiti¢ki pristup koji je omogucio
izradu programa za vizualizaciju ovih kongruencija u pro-
gramu Mathematica Pokazano je nekoliko primjera.

matica Some exmples are shown. - . . .. .
Klju€ne rijeti: kongruencija, dekompozicija na razvojne
Key words: congruence, decomposition on developable plohe, Zarisna linija, singulariteti, vizualizacija

surfaces, focal lines, singularities, visualization

MSC 2000: 51M15,51M30,51N10,51N35,68U05

1 Introduction ray and consecutive rays are tloeal planesof a congru-
ence. The focal surface is the envelope of the focal planes.
A congruencer is a double infinite line system, i.e. itisa A congruence clearly reciprocates into a congruence. The
set of lines in a three-dimensional space (projective, @affin focal planes and points are interchanged and the focal sur-
or Euclidean) depending on two parameters. A lirec face reciprocates into the new focal surface.

is said to be aay of the congruence. [11], [5], [9], [1]

Theorder of a congruence is the number of its rays which
pass through an arbitraty point; tokassof a congruence  Since the lines of the congruence are bitangents of the fo-
is the number of its rays which lie in an arbitrary plane. cal surface, every congruence of lines may be regarded as
mth order, nth classcongruence is signed. the system of bitangents of a surface. The surface may,
however, break up into two separate surfaces, and the orig-
inal surface, or each or either of the component surfaces
may degenerate into a curve; we have thus as congruences
the following systems of lines:

Rays in a congruence can be decomposed in two ways into

a one-parameter family of developable surfaces (torses) so 1. the bitangents of a surface,

that through every raly € ¢ pass two torses that are real
and different (the case bfyperbolicray), or imaginary (an
elliptic ray), or real and coincident garabilic ray).

A point is called thesingular pointof a congruence ifo*
rays pass through it. A plane is called tsiagular plane
of a congruence if it contains? rays.

common tangents of two surfaces,

tangents to a surface from the points of a curve,
The points of contact of a rdye ¢ with the edges of re-
gression (cuspidal edges) of these torses are callédd¢he

of |. The foci ofl are the intersection points bfvith con-
secutive rays of a congruence. The surfaces formed by the
foci of the rays of a congruence are calledftisal sur-  \yhere the last four cases being degenerate cases of the first,
faces Each ray of a congruence touches its focal surfacehich is the general one. [9, p.37]

at the foci. Two planes defined as the planes containing a

common transversales of two curves,

o M 0w N

lines “through two points” of a curve,
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2 1st order congruences Thenth order space curve can possess singular points with
the highest multiplicityn — 2. If the directing curve" has

It was proved that the rays of the first order congruencesa multiple point it must lie on the liné because i€" had a

are always tranversales of two curves, or they intersect themutiple point out of the linel, the plane through that point

same space curve twice. Beside that it was proved that theand the lined would cut the curve" in more tham points,

only congruence of the first order, consisting of a system which is impossible. Thi-ple point of the curve" which

of lines meeting a proper curve twice, is when the curve is lies on the lined is signedD¥, wherei < n—k. Three ex-

a twisted cubic. ([9, p. 64], [14, pp. 1184-1185], [13, p. amples of 7th and 8th order curves with dobule and triple

32)) points are shown in Fig. 2.

If a congruence is a system of lines meeting two direct-

ing curves of the ordens andm which havea common d e d et
points, the order of a congruencersm — a. The only

congruence of the first order of this kind is when the di- D;

recting curves are a curve of tmth order and a straight

line meeting itn— 1 times. [9, p. 64] ¢ D)

Therefore, we have only two types of the congruences of D!
the first order: z

b_\ D\//&\

<
=
E

Typel 1st odremth class congruencest are the systems O;.< Z

of lines which intersect a space curkof the order Dy
n and a straight linel, wherec" andd haven—1 Figure 2
common points.

. . l
Typell 1st order 3rd class congruen«sé is the system of 2.1.2. Singular points of;

lines which meet a twisted cubic twice. a) All singular points ofc? (the points which contaipe?
rays ofc?) lie on its directing lines" andd.

21 Congruencesof thetypel If a pointC lies on the curve" andC # DIJ then the rays

2.1.1 Directing lines o'} of C} which pass trougle form the pencil of linegC) in
the planed € [d] which contain<€ andd. (See Fig. 3)

The directing lines of a congruencg are a space curve

c" of the ordem and a straight lin@ which intersectg" c"

in n— 1 points. If all intersection points are the regular

points of c" we will sign themD?,......D! ;. Some of

these points can coincide. There are cases when the line

d is the tangent line of", the tangent at inflection, etc. If

c" andd haves-ple contact at one regular common point it

is signedDil’s, wherei <n-—s. (See Fig. 1)

Figure 3

n b) If a pointD lies on the lined andD # DiJ, then all the
lines which joinD with the points of the curve" are the
D! rays of c}. They formnth degree conép with the vertex
D. Sincec" andd haven— 1 common points, this cone
intersects (or tuoches) itself- 1 times through the lind,
Figure 1 thus the lined is (n— 1)-ple generatrix of 3. (See Fig. 4)
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2.1.3 Rays of} through an arbitrary point

Every pointA which is not the singular point of}, i.e.

A ¢ c" A¢ d, determines the plan® € [d] which cutsc”

in only one poinC which in general does not lie on the line
d. The lineAC, which cutd in one pointD, is the unique
ray of ¢} through the poinA. If the planeda contains one
of the the tangent lines @f' at the intersection poirD}‘ (or

if it is the rectifying plane aDil’S), then the point€ and

D cioncide withD¥ (D) and the lineADK (AD®) is the
unique ray of¢;! throughA. (See Fig. 6)

o
d /
&

d
. BA A
Figure 4 / /
D
c) If a point Dik is the intersection point of" andd and . é 4
if it is a k-ple point of the curve", then the rays through — D'
DK which cutc” form (n—k)th degree conég;k with the 7 :
vertexDX. The lined is (n— k — 1)-ple genetartix oﬁg_;k.
Besides that the rays through the pd])ftform k pencils Figure 6
of lines (DX) in the planes determined by the lideandk ] L
tangent lines ot" at Dik. If the intersection point isﬁ)il’s, 2.1.4  Singular planes af,
then the pencil of line$D;"®) in the rectifying plane o¢" All singular planes of'! (the planes which contain’ rays
atDil*S are also the rays of a congruence. of ¢}) are the planes of the pendd]. From 2.1.2. it is

clear that in every plan& < [d] lie thes pencil of ray$C)

The other lines of the sheef®X! and {D>°} are not re-
tor) and (b} or (DX) or (D*%). (See Fig. 7)

garded as the rays of a congruence.

The example of the rays through the regular intersection It ig posEiple'that some of the tangent Iines. at intersection

pointD? is shown in Fig. 5. points D Ilg in the same plane of'the pen@i]. In such
case there is more than one pencil of lines in the plane de-
termined by these coplanar tangent lines.

c" c"
d d /

5\ 1
A4/

NG

|
\ |/

~\|

T
I\

AN
m

24
/
/

/A

/

Figure 5
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2.1.5 Rays ot} through an arbitrary plane

Every planea which is not the singular plane af?, i.e.

o ¢ [d], containsn rays of the congruence. The plaoe
cuts lined in one pointD andnth order space cune' in

n pointsCj,j =1,...,n. The linesDC; aren rays of the
congruence} in the planea. They are the intersection of
the planex andnth degree coné} and can be real and dif-
ferent, coinciding or imaginary. k& cuts the lined in D!‘,
thenn—k rays are the intersection afand the conég;k
and otherk rays are the intersection of and the plalnes

throughd determined by the tangent Iinescc.‘?fatDik. (See
Fig 8)

Figure 8

2.1.6 Decomposition of } into developable surfaces

and the foci are imaginary. If the developables coincide,
the ray is parabolic and the foci coincide. A congruence
or the partition thereof is said to be hyperbolic, elliptic o
parabolic if its rays are hyperbolic, elliptic or parabolic

In the case of the 1st order surfaces of the type | the fo-
cal surface degenerates into the directing cuo?eandd.

The developables have not the cuspidal edges, only cusp-
idal points: the verteced of the cone< ) and the points

C which are the intersections of the plardes [d] and the
curvec". Thus, each ray af ! has the foci on the directing
linesc" andd. Ifthey are real, the congruence is hyperbolic
with parabolic rays im — 1 planes through the poin&f
where the developables and foci coincide. If the directing
lines are imaginary the congruence is elliptic.

2.2 Congruencesof thetypell

If a congruences is the set of lines which cut a proper
curve twice, this curve must be a twisted cubic. Since
through an arbitrary point only one ray of the 1st order
congruence passes, the projection of the directing curve
from this point onto an arbitrary plane has only one double
point. Thus this projection is the 3rd order plane curve. As
the original curve and its projection have the same order,
then the directing line of a congruensgés a twisted cubic.
The projection of a twisted cubic onto a plane from a point
on a secant line yields a nodal cubic and from a point on a
tangent line a cuspidal cubic [4, p. 54]. (See Fig. 9)

The tangent and a secant lines of a twisted cuBidill
up the projective space and are pairwise disjoint, except at

As mentioned in the introduction every congruence can bePeINts at curve itself [4, p. 90]. Thus through an arbitrary
decomposed in two ways into a one-parameter family of POintunique ray of the congruensepasses.

developables. These two families arise if one of the two

parameters of which a congruence depends, is fixed.

In the case of the 1st order congruences of the type | the
devlopables are the sets of rays through singular poists, i.

one family is formed by thath degree cone&l, and the
other by the planes of the pendd]. Every ray ofc} is

the intersection of two developables, one from each fam-

ily. Sinced is (n— 1)-ple generatrix of}, every plane of

[d] cuts it into only one more generatrix which is the ray of
a congruence. For the rays through the intercestion points

DK thenth degree cones splitintm — k)th degree cone and
k planes through the ling. (See Figures 4,5 and 7)

2.1.7 Focal properties—
parabolic rays of'}

hyperbolic, elliptic and

In general case the ray of a congruence touches the focal
surface at foci which lie on the cuspidal edges of the de-
velopables. If the developables through the ray are real and
different, the ray is hyperbolic and the foci are real and dis
tinct. If the developables are imaginary, the ray is eltipti

8

Figure 9
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It is clear that such congruence is of the 3rd clasé),( of f331 which cutsb? at the pointsBy, B, is the part of the
because every plane cuts the cubden 3 points and the  intersecion of the cond%l, Zéz. Namely, the intersection
lines joining them are three rays of a congruence. Theseof 73 andZ3, is b®UB;B,.

. 1 By
three rays can be: three real and different (a), one real and 3. . .
two imaginary (b), three real where two of them coincide 1he curveb®is the focal curve ofs3;, it contains the cus-

(c) and three real and coinciding (d). (See Fig. 10) pidal points of¢3, B € b%. The ray of33 is hyperbolic if
the intersection pointBy, B, € b3 are real and different, it

is parabolic if they coincide (the ray is a tangenbdy and
it is elliptic if they are imaginary.

The parabolic rays orB?} form the tangent developable of
b3. (See Fig. 12)

Figure 12

The rays of such congruences are also the intersections
of the corresponding elements of two collinear bundles of
planes{Bi1}, {B.}, [7, p. 135], [14, p. 1185]. In this case
the basic points of the bundleBy( By) lie on a twisted cu-

bic b3, and the unique ray through an arbitrary point can
be constructed as the part of the intersection of two ruled
AII singullar pqints ofﬂ%% lie on theltwisted cubi<b3.. The quadrics. These quadrics pass throbgrand their rul-
|II;€S which join the poinB € b® with the other points of g5 are determined by the collineation between the bun-
b’ form 2nd degree congg. (See Fig. 11) dles{B;} and{Ba}, [7, p. 136]. In the special case when
one plane in the collineation betweéB; } and{By} cor-
responds to itself, the basic culti¢splits into one straight
line and a conic which have one common point, and the
congruences? splits into the 2nd class congruenckand

the field of lines in the plane of the conic. These congru-
ences are elaborated in detail in [2].

Figure 10

3 Analytical approach and Mathematica
visualizations

If two algebraic space curvag andc; are given by the
following parametric equations

Figure 11

Ci..Xx=x1(u), y=vyi(u), z=2z(u),

Since every plane contains exactly three raysgfthere .
/ery p 1 y ysb x1,Y1,21: 11— R, 11 CR, x1,y1,21 € CH(I)
are no singular planes af3.

1 . . C2---X:X2(V)7 YZYZ(V)a Z:ZZ(V)v
B85 can be decomposed into one family of developables. _ 1
This family consists of the conég, B € b®. Every ray X2,¥2:2 12 = R, 12 C R, X2,¥2,22 € C(12), (1)
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then the set of lines which join the points@fandc, are
given by the following equations

X=x(u)  y-yi(u)  z—z(
xa(U) —xa(v)  ya(u) —ya(v)  za(u)—2z2(v)’
(u,v) €l x 1, CRZ.

(2)

In the previous section, for drawing the directing lines of
c#, we used the following parametric functions:

d..xy(u)y=0, yi(uy=0, z(u)=u, U€eR,

(
A" Xo(V) =ax(V—V1) - (V= Vq_1),
(

(3)

It is clear that the linal is the axiszandc" is thenth order
space curve which cuts the axst the pointd;(0,0,v;),
ie{l,..,n—1}.

If the polynomial x2(v), from (3), contains the factor
(v—v)%, theni < n—sandd andc" haves—ple contact
at the poinD;(0,0,V;).

If the polynomialzz(v), from (3), takes the form

(4)

(V) =V(V—Viy) - (V= Vi), Vi; #0,
i1,...,ik€{l,....n=1}, k<n-2

then(0,0,0) is thek—ple singular point o€" and the coor-
dinates of intersection points ot andd are(0,0,2(v;)).

(3) and (2) give the following equations of the rayscf
X y  u-z
X (V) Ya2(v)  u—2(v)

., (uv) €R2

(5)

X
The above equations enable computer visualization of the

rays ofct and$31. Based on this we made the program in
webMathematicavhich enables interactive visualizations
of ¢} on the internet. It is available at the following ad-
dress:

www.grad.hr/itprojectmath/Links/webmath/indexeng.html

3.1 Examples

In the following examples the graphics are produced with

the progranMathematica

EXAMPLE 1

Two dsiplays of the same 2nd class congruence are shown

in Fig. 13. The directing lines of this} are the axiz and
the circle given by the following parametric equations:

X(v) =cosv+1, y(v) =sinv, z(v)=0, ve [0,2r].

10

Figure 13

EXAMPLE 2

The rays of the 4th class congruence are shown in Fig. 14.
The directing lines of this congruence are the Viviani's
curvec* which cuts the axig in two points, but one of
the intersection points is the double pointf The para-
metric equations of* are:

(V) = g(cosv— 2sin‘—2’ ~1), y(v)=siny,
z(v) = ?(coswr Zsin\—zl -1), ve[-2m2m.

Figure 14
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EXAMPLE 3

EXAMPLE 4

Two displays of the same 7th class congrence are shown inThe visualization of83 whose directing curve is given by

Fig. 15. The directing lines of this; are the axiz and
the curvec’ which is given by the following parametric

equations:

X(v) = iv(v— 1)(v—2)(v—3)(v—3.5)(v—4),

- 10
y(v) = 2vx(v),
zZ(v)=v, VveR.

Figure 15

the following parametric equations

X(V) =V,
y(v)
Z(v)

=(v=1)(v+1),

=(v-13%*v+1), veR

is shown in Fig. 16. The same congruence, with red
parabolic rays, is shown in Fig. 17 for two different view

points.

Figure 17

11
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About Curvatures on Triangle Meshes

ABSTRACT

A face-based curvature estimation on triangle meshes is
presented in this paper. A flexible disk is laid on the mesh
around a given triangle. Such a bent disk is used as a
geodesic neighborhood of the face for approximating nor-
mal and principal curvatures. The radius of the disk is free
input data in the algorithm. Its influence on the curvature
values and the stability of estimated principal directions
are investigated in the examples.

Key words: triangle mesh, curvature

O zakrivljenostima na trokutnim mrezama

SAZETAK

U ¢&lanku je prikazana procjena zakrivljenosti na trokut-
nim mreZama, bazirana na stranicama. Gipki disk poloZen
je na mreZu oko danog trokuta. Takav prilagodljiv disk
koristi se kao geodetska okolina stranice za aproksimaciju
normalnih i glavnih zakrivljenosti. Polumjer diska je neza-
visni ulazni podatak u algoritmu. U primjerima se istraZuje
njegov utjecaj na vrijednosti zakrivljenosti i na stabilnost
procijenjenih glavnih smjerova.

Klju€ne rije€i: trokutna mreza, zakrivljenost

MSC 2000: 68U05, 68U07, 65D20

1 Introduction alent to the computation of the best tangent plane to the
mesh at a given vertex. Most methods compute a weighted
Triangle meshes are the most frequently used surface repaverage of facet normals in a one-ring neighborhood of the
resentations in many surface-oriented applications. Sur-vertex.

face curvature properties have been successfully employed

for solution of different practical problems, as smooth-
ing or simplifying meshes in modeling and manufacturing,
also for surface classification and 3D object recognition
in computer vision research, etc. Discrete counterparts of i i
continuous definitions of differential operators, curvatu X Vi @i = k-Ared(triangle;), k > 0 andAreatriangle))
values, geodesic curves and Dirichlet energy, etc. have's either surface areg or Voronm-surfage area or a mixed
been given and derived for arbitrary triangle meshes in [3], surface area of the triang{®, vj, vj+1} (Fig. 1).

[10], [13] and [14].

Almost all methods for surface derivative and curvature es-
timations on meshes have been vertex connectivity based.
In these approaches a specified neighborhood of vertices
formed by adjacent vertices, edges and faces is used to ap-
proximate the surface normal, surface derivatives and cur-
vature values at a vertex. The algorithms use either aalyti
methods based on surface fitting, or they work with dis-
crete differential operators. The crucial first step in thes
algorithms is the computation of a vector at each vertex
that approximates the true normal vector at this point of the
surface represented by the mesh. This problem is equiv-Figure 1. One-ring neighborhood of a vertex

iNj .
N:%, j=1..m,

wherem; is the number of edges emanating from the ver-

Vit

VNj
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A number of proposals have been published for choosingcan be determined on the base of Euler theorem ([11], [2],
the weights or the neighborhood for determining the best[4]). Mean and Gauss curvature values can be computed
normal vector ([15], [11], [9]). from the curvature tensor, i.e. from the Weingarten matrix
An other problem is to estimate normal curvatures, which or from its symmetric extension by eigen-decomposition
is equivalent to the definition of osculating circles produc ([12], [18]). The Gauss-Bonnet theorem gives a direct
ing a second-order approximation to those curvature valuesmethod for the computation of Gauss curvature. It has two
([22], [19]). different discrete forms which provide good approxima-
A normal curvature estimation in a one-ring neighborhood tions for special triangulations of surfaces [20].

can be given simply by defining the osculating circle in | this paper we define normal curvatures on each face of
a normal plane through the vertices v; and the normal ¢ rjangle mesh in order to estimate the principal direc-
vectorN (Fig. 2). tions and to characterize elliptical, umbilical, flat and hy
perbolic regions. The proposed new method is presented
in Chapter 2. In the examples (Chapter 3) we show the
proposed method o?rsynthetié and real triangulated sur-
faces.

2 Curvatures defined on faces

2.1 Geodesic circle of a triangle

Instead of computing surface properties at vertices in ver-
tex neighborhoods we define curvature values ordered to
faces. The center of the defined region is the barycentric

Figure 2: Osculating circle in a normal plane . . . .
g g P center of the given triangle. We intersect the mesh with

The curvature of this circle is normal planes passing through the face normal of the tri-
2<N,(vj—Vv) > angle, then we measure a given geodesic radius along the
Kn(Vi) ~ VI polygonal lines of intersection in both directions from the

center point. In this way we get a number of curved diame-
ters of the geosedic circle bent on the mesh around the face.
Instead of circle in a normal plane, interpolating quadrati \\e call this geodesic neighborhood “splat” after Kobbelt
polynomial curve is also used e.g. in [7]. The one- [g] and the set of the polygonal diameters “spider” after

ring neighborhood of a specified vertex is replaced by a gjmari [16] (Fig. 3). Then we compute the chord lengths
Voronoi or mixed surface area [10], it is extended in [7]

and geodesic neighborhoods are also used ([12], [16]) in
the computations. The selection of neighborhood size can
affect results significantly: small neighborhoods provide
better estimates for clean data, while increasing the reigh N
borhood size smoothes the estimates, leading to less sen-

sitivity to noise. Obviously, small errors in these approxi

mations lead rapidly to unreliable, noisy curvature values

Comparisons of five frequently used methods are given in

[5].

Analytic methods are also applied for curvature estima-

tions by fitting a surface to the mesh in the neighborhood

of the point of interest and evaluating its curvatures ([5],
[6], [19]). Principal curvatures and principal directions Figure3: Geodesic circle of a face

where<, > denotes the dot product.

of the constructed diameters in order to estimate normal
curvature values.
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2.2 Osculating circle and normal curvature We select the maximal curvature and define it as first prin-
cipal curvaturek; and the corresponding direction in
the plane of the current triangle as first principal direc-
dtion. This direction is fairly stable, even if we compute
with smaller geodesic circles. The second principal direc-
tion T is orthogonal to it. In the case of properly defined
& geodesic circle and nearly regular triangulation it is the d
rection belonging to the maximal chord length (Fig. 5).

We define in each normal plane an osculating circle to the
face determined by the endpoints of the bent diameter an
the face normal (Fig. 4).

Figure 4: Osculating circle in a normal section

Denotery the given geodesic radiusg, the chord length
between the endpoints of the curved diametarftZe un-
known central angle ang, the required radius of the oscu-

lating circle. From the equations Figure 5:  Principal directions

Ma =rg and  rpsina = d
2 3 Examples
we get fora
i - Siﬂ In order to compute a geodesic disk around a triangle
2rg o face in a mesh we have to construct a flexible polyhe-
We apply the approximation dral data structure on the mesh which differentiates inner
and boundary edges, moreover “feature edges” along sharp
ridges. Then we have to implement an algorithm for com-
puting the lines of intersection of the mesh and the defined
normal planes [17]. The normal sections on the mesh are
polygonal lines, and the arc length on the approximated
o=, /(1-=—)6, surface is measured along these polygonal lines.

. ad
smaza—F, O<a<k1l

and get

The triangulated cylindrical meshes in Fig. 6 and 7 are
generated from the analytical description of a cylindrical
rg . a surface. The vertices of such a “synthetic” mesh are ly-
o i a#0 and  Kn# 6 ing exactly on the surface approximated by the mesh. The
. ] ) . geodesic radius in Fig 6 is 3.5 times the average size of
is the radlus.of the osculating circle and the normal curva- e triangles. The number of the computed diameters is
ture, respectively. 24. In Fig 7 the same cylindrical surface is shown with dif-
ferent triangulation. The geodesic radius is 0.6 times the

2.3 Principal directions and principal curvatures average size of the triangles in the mesh. The largest cur-

Repeating this computation for a set of normal sections in vature computeq by t'he proposed method are 0.0402 gnd
the geodesic neighborhood of the given triangle we obtain 0-0405. respectively, instead of 0.0400. Hence the relativ
normal curvature values,;, i = 1,...k. If the mesh is errors in the curvature estimation are 0.5% and 1.2%, re-
a dense triangulation of a regular surface then the normalsPectively. The corresponding principal directions are in
planes belonging to the minimal and maximal normal cur- both cases the most perpendicular ones to the axis of the
vatures are orthogonal to each other. They determine thecylinder among the 24 tangent directions. These directions
principal directions. are shown in the figures with longer segments.

consequently,

'~
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Figure 7: The same cylindrical surface

In Fig. 8 a real triangle mesh approximating a sphere is
shown. In this mesh there is a noise in the vertex data,
and in the size of the triangles. The chosen geodesic ra-
dius is three times the average triangle size. The diffexenc
in the computed normal curvatures is about 3%, and this
relative error does not change when the geodesic radius is
varying between 2.5 and 7 times the average triangle size.
This accuracy in the computation is comparable to the pub-
lished results in the literature analysing curvature estim
tion methods [5].

In Fig. 9 and 10 a synthetic mesh of one eighth of a torus is
shown. In Fig 9 the geodesic radius is three times the aver-
age triangle size, and the results in the principal direstio
are very good, considering the relative coarse approxima-
tion with 24 directions in the disk. In Fig 10 the geodesic
disk is apparently too big to get reliable approximations
(5 times the average triangle size) for the specified trengl
face. In this picture only boundary and silhouette edges are
shown besides the 24 diameters of the geodesic disk.

The second example shows that our curvature estimation

works also in the case, where one-ring neighborhoods can

not be applied.

lol ey
Al ;

Figure 8: Splat on the sphere
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Figure 9: Splat on the torus

a

Figure 10: The same facette with a bigger splat
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According to our experience the best measurement of the[6] GOLDFEATHER, J., INTERRANTE, V., A novel cubic-
radius of a geodesic disk is between 2.5 and 3.5 times the  order algorithm for approximating principal direction
average triangle size in a dense mesh. Of course, the mesh  vectors ACM Transactions on Graphics 23/1 (2004),
should provide a proper surface approximation. The exam-  45-63.

ples have shown that our face-based curvature estimation

works better than vertex-oriented methods using a one-ring[7] HAMEIRI, E., SHIMSHONI, |., Estmating the princi-

neighborhood, especially in the case when the mesh con-  pal curvatures and the Darboux frame from real 3D

tains long narrow triangles. range data Computers & Graphics 28 (2004), 801-
814.

Some more investigations have to be done in the future,
e.g., in the analysis of relative errors and in further appli

. [8] KoBBELT, L., BoTscH, M., A survey of point-
cations.

based techniques in computer graphi€C®@mputers &

Graphics 28 (2004), 801-814.
4 Conclusion _ _

[9] M AXx, N., Weights for computing vertex normals from

We have introduced curvature values ordered to faces in  facetnormalsJournal of Graphics Tools 4 (2000), 1-6.
triangle meshes by laying a flexible circular disk with user-
specified radius onto each face of the mesh. From the
chords of such a bent disk and from the face normal we
have defined normal curvatures of the current face. The
examples have shown that the obtained principal curva-
ture values and the corresponding principal directions are
quite reliable if the radius of the disk achieves an optimal
size. Our method provides a good classification of elliptic,
parabolic, flat and hyperbolic regions of the mesh.

[10] MEYER, M., DESBRUN, M., SCHRODER, P.,
BARR, A.H., Discrete differential-geometry operators
for triangulated 2-manifoldsVisualization and Math-
ematics Ill. (H.C. Hege and K. Polthier, Ed.) Springer
Verlag 2003, pp. 35-57.

[11] MoRETON, H.P., $QuIN, C.H., Functional opti-
mization for fair surface desigrisIGGRAPH’92 Con-

ference Proceedings 1992, pp. 167-176.
We have implemented the algorithm for constructing

geodesic disks on triangle meshes and for estimating nor-{12] Pacg, D.L., SuN, Y., KOSHAN, A.F., Rk, J.,

mal curvatures and principal directions in Java. ABIDI, M.A., Normal vector voting: Crease detec-
tion and curvature estimation on large, noisy meshes
Graphical models 64 (2002), 199-229.
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Two- and Three-dimensional Tilings Based on a
Model of the Six-dimensional Cube

ABSTRACT

A central-symmetric three-dimensional model of the six-
dimensional cube can give us the idea of filling the space
with mosaics of zonotopes. This model yields also plane
tilings by its intersections. Using the parts of the model the
mosaic and the tiling can further be dissected by projec-
tions, associations and Boolean operations. Further con-
structions are also indicated in the paper.

Key words:  3-dimensional models of the hypercube,
plane-tiling, space-filling

MSC 2000: 51M20, 63U07

2-dimenzionalno i 3-dimenzionalno poplo¢avanje
zasnovano na modelu 6-dimenzionalne kocke

SAZETAK

Centralno  simetri¢ni  3-dimenzionalni  model  6-
dimenzionalne kocke moZe nam dati ideju kako prostor
ispuniti s mozaicima zonotopa. Pomocu presjeka, ovaj
model vodi takoder i ka ravninskom poplodavanju.
Koristeéi dijelove modela, mozaik i poplo¢avanje mogu
biti razdijeljeni projekcijama, asocijacijama i Boolovim
operacijama. U ¢&lanku se takoder navode i daljnje
konstrukcije.

Klju€ne rijeti: 3-dimenzionalni model hiperkocke,
ravninsko poplo¢avanje, prostorno popunjavanje

Lifting the vertices of & sided regular polygon from their  surface (Fig. 1) can be generated as well in different pro-
plane perpendicularly by the same height and joining them cedures [3, 4, 5]. Each polyhedron from these will be a so
with the centre of the polygon, we get tkedges of the hy-  called zonotope [6], i.e. a “translational sum” (Minkowski
percube k-cube) modelled in the three-dimensional space sum) of some segments.

(3-model). From these the 3-models or their polyhedral

Figure 1
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Figure 2
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Figure 3
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The 2-dimensional ortogonal projection of these 3-models triacontahedron which contains our 3-model of the 6-cube
indicates the idea how to construct space-filling with this (Fig. 2).
model. However our 3-model of the 6-cube for exam- |t can be seen, that we can fill the space with these

ple does not fill the space. The projected grid of the 3- splids. The basic stones are to cut from a honeycomb by
cube joins our grid above and the cube fills the space well symmetry-planes. If the cutting process has been com-
known. The edges of the cube can be selected from thepleted, we have the basic stones from the three starting
conveniant lifted edges of the 6-cube’s 3-model. With the solids (Fig. 3).

selected four edges of the grid we can build the 3-model apgther possibility is to rearrange our space-filling, as-
of the 4-cube. The shell of this is a rhombic dodekahe- sempling the 3-models of the and j-cubes from lower-
dron which fills the space but this arrangement has not anygimensional cube 3-models. From the given 6 edges we
rotational symmetry without additional assumptions. We can combine the 3-models of2 j < k cubes: 4 of the
can however replace a cube in the hole of the rotational-3-cubes, 3 of the 4-cubes and 1 of the 5-cubes. Their addi-
symmetrically arranged rhombic dodekahedra and con-tions (Fig. 4) can replace the 3-models of the abovand
tinue the filling in a sixfold polar array with a rhombic j-cubes in our mosaic.

Figure 4
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Interpreting the starting construction of tkeube 3-model  fore a plane-tiling appears on these horizontal intersasti

as a sequence of dispositions, the increasing dimensionabf our space-filling solid-mosaics based on the 3-model of

inner 2< j < k cube 3-models can “easily” be separated. the 6-cube (Fig. 5). This has rotational symmetries but the

The edges of the,Q, ...,k cube model-sequence are pa- diagonal intersections can be identical with the longitudi

rallel to thek-segment chain approaching a starting helix, nal and cross-intersections (Fig. 6).

and the dlsrp])o.mtlc_)rnhvecto(rjs arejoll(nmij each other ri\lon:)g thi We can see in Fig. 7 the horizontal intersections alterna-

isnetg:nentt(é ain. " e mtc_) ejni‘"tv _f "partz clan a?ﬁ t?h ting one anothe(0,1,2,3,2,1,0,1,...) in the space-filling
preted as intersections of two Tull models So that tn€ ., ,»i- hased on the 3-model of the 6-cube. The tiling of

equal ?in;en;sitljlnal réarlts are pOSiFiOTFd ar.ound the ma!n di'the intersections can further be dissected by the perpendi-
agonal of a full model, symmetrically to its centre point. . : ? '

Mgore on this full model {3-model ofythe n-cube) cgn be cular projected edges of the intersected solids (Fig. 8). A
read in [4], [5], [7], and on periodic and aperiodic tilings, ?A?élfgghgggﬂﬁn%r;ggugrﬁg dseﬁsn in the projection of the
based on d-dimensional crystallographic space groups,yod o 9 ¢ o o _ _

find references in [1]. A further related topic might be: To I?_rOJectlng the comblnatlon of th_e intersection grlds, the
what extent are these 3-models certain axonometric pic-tiling can further be dissected (Fig. 9). The coloring here
tures of higher-dimensional cubes, created by a sequencés kept to one intersection and the grid of another one is
of parallel projections? The Pohlke-theorem has surely projected into this plane.

limited validity in higher dimensions [2]. In Fig. 10 we have combined the grids of three and finally
As it follows from our construction, the vertices lie in ofall four horizontal intersections. This is further disted
planes parallel to the basic plane of the constructiongther by the projected edges of the intersected solids.

Figure 5 Figure 6
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We can see in Fig. 11 the cross-intersections alter t ngThe alternatin g(O 1234565 .) longitudinal inter

0 ez thth(031230I1fth) s thb pl thfltl) gm sections of our mosaic are des pt ed in Fig. 12. The
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With the above methods two- and three-dimensionalftilings [4] VOROs L., A Symmetric Three-dimensional Model

based on the 3-modelskfubes, can surely be made up to of the HypercubeConference: Symmetry-Festival
k =10 and probably furthermore, too. These cases are just 2006. Budapest, to appear in Symmetry: Culture and
examined but not displayed yet in all details by the author. Science, special issue

The creation of the constructions and figures required for
the paper was aided by the AutoCAD program and the Au-
tolisp routines developed by the author.

[5] VOROsL., Some Ways to Construct a Symmetric 3-
Dimensional Model of the Hypercupést Croatian
Conference on Geometry and Graphics, Bjelolasica,
September 17-21 2006, Abstracts, 31
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Visualization of Curves and Spheres in
Sol Geometry

ABSTRACT

The paper makes an attempt to visualize one of the ho-
mogeneous geometries, the Sol geometry, by illustrating
first the geodesic curves and spheres then the so-called

Vizualizacije krivulja i ploha u Sol geometriji
SAZETAK

Ovaj clanak je pokusaj vizualizacije jedne od homogenih
geometrija, Sol geometrije. Prvo se ilustriraju geodetske
krivulje i sfere, a zatim i tzv. translatirajuée krivulje i sfere.
Takoder su navedena njihova osnovna svojstva.

translation curves and spheres. We've collected their ba-

X ) Kljucne rijeci: vizualizacija Thurstonovih geometrija
sic properties, too.

Key words: visualization of Thurston's geometries

MSC 2000: 53B20, 53C30

“This (the Sol geometry)is the real weird. Unlike the  The visualization of the three possible two-dimensional
previous geometries, solve geometry isn’t even rotatignal homogeneous Riemann geometries H2, S is famil-
symmetric. | don’t know any good intrinsic way to under- iar to anyone, but in higher dimensions we face a lot of
stand it” (J. R. WEEKS) [7] open questions. Even in three dimensions, where first time
anisotropic cases also appear we have difficulties in the
imagination. No doubt, the standard models workEdy

H3, S°, moreover real-time interactive graphics algorithms
have been developed by J. R. WEEKS that can be extended
In [5] W. P. Thurston formulated a geometrization conjec- even more for the product spac®sx R, H2 x R[8]. The

ture for three-manifolds which states that every compactremaining three Thurston‘s homogeneous 3-dimensional

orientable three-manifold has a canonical decomposition . . -
into pieces, each of which admits a canonical geometric geometriesSL(2, R), Nil andSol, howeve/rirs difficult to

structure from among the 8 maximal simply connected ho- handle. From these the twisted spa&i$2,R) and Nil
mogeneous Riemannian 3-geometfigs H3, 3, ¥ x R, need multiple imaging and there are just a few results about
2 . : . . them, whilest theSol (mentioned also asolvin the litera-

H® xR, SL(2,R), Nil andSol. Obviously, the Poincaré  yre) is the most unusual as our motto above indicates, as
conjecture (a_compact three-manlfold w[th trivial funda- el (for more information consult [5], [6], [4]). We note
mental groupis necessarily homeomor_ph|cto the 3-sphereynat in the paper [2] Emil MOLNAR elaborated the projec-

is a special case of the Thurston conjecture. In the pastijye interpretations of all the eight geometries, we ontg ci
thirty years, many mathematicians have contributed to the his model forSol.

understanding of this problem, maybe the most important ; -

attempts are due to R. Hamilton. In 2006 a scoop went ??Lgsgzgg%ﬁgs:ci Orb()tg'l:];i %% ggnfgﬂo?,vgrow structure
round the world claiming that a Russian mathematician, P :
G. |. Perelman could give a complete proof of the Thurston
conjecture and so the Poincare conjecture, too. Followed

1 Introduction

1 x z
by the complex and knotty proof (using modern differential 0 ez g 0
geometry of Ricci flows) the interest has turned to homo- (1 a b ¢ 0o 0 & ol~
geneous spaces. This paper tries to help in understanding 0o 0o 0 1

one of the above geometries, tBel.

Let (M,g) be a Riemannian manifold. If for anyy € M
there does existan isome@®y: M — M such thay = ®(x),
then the Riemannian manifold is calladmogeneous

(1 x+ae? y+b& z+c)

* Supported by the Oveges Jozsef Programme OMFB-01525/2006
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is the right action by a translatiqr, y, z) on an affine point The well-known equation of geodesics
(a,b,c) yielding also a point oBol expressed in homoge- - o
neous (projective) coordinates after choosing a fixedworigi d°U* | du du

0(1,0,0,0). dz " Udt dt

Then an invariant metric 080l(O, T) is given by containing the Christoffel symbols of second kind:
k _ 1991 | ag; _ 99\ ~lk

(dS)Z _ eZZ(dX)Z_’_efZZ(dy)Z_’_ (dZ)Z, r” =5 (a_ujr + O_UIJ— - ﬁ_ulj) g© turns [1] to

as infinitesimal arc length square, now in any point )f+2)f.Z:0
(1,%,,2) [5], [2]. y—2yz=0
z— & (X)* + e #(y)> =0.

2 Geodesicsand their representation Solving this differential equation system as a Cauchy prob-
lem
In the following we briefly recall from [1] the standard pro- .
cedure yielding the geodesics 96l x(0)=0 X_(O) =u
Consider first the fundamental (metric) tensor from the y(0)=0 and Y(O) =V
above mentioned equation Z(0)=0 2(0)=w
wHv+w? =1
e 0 0
(gj)=| 0 e2 0]. we could arrange the following table that contains our re-
0 0 1 sults:
1) x(t) = ufie#Vdr
u#£o0 y(t) = v [§ e Ddt
v#£0 z(t) comes from the separable differential equation
dz
O<w=v1-ue-v2<1 1_LJZ(TZZ_\IZeZZ:dt,forwzo
whose solution is non-elementary function.
2) u#£0 X(t) = ut
v#0 y(t) =vt
w=0 z(t)=0
sinht
&) v=0 X() = Y osit + wsinht
y(t)=0
O<|w=v1-uw<1 Z(t) = In (cosht +wsinht)
(4) u=0 x(t) =0
0 v sinht
v = cosht —wsinht
0O<|w=v1-v<1 Z(t) = —In(cosht —wsinht)
(5) u=0 X(t)=0
v=0 y(t)=0
|w| = Z(t) = £t, forw=+£1

Table 1: Table of geodesics in Sol geometry, depending on the inigikcity
parametergu,v,w), u> +v? +w? = 1.
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The forthcoming pictures try to visualize the most general
cases (1) and (3). As we easily see the chapuge w)

< (v,u,—w) leads to the isometry of the corresponding
geodesic curves.

Fig. 2: Geodesic curve starting in the [x,z] coordinate
plane with u= 0.9 in a general view in the param-
eter interval te [0, 2].

Clearly, the geodesic sphere unfortunatelly can not be ex-
pressed in a closed explicite form. We give approximations
by plotting the endpoints of many geodesic curves (of the
first type) with different initial unit velocities, acconulj to
geographic parameters

-

U= cosd cosp <o <™
] T
0,5 Vv = cos9 sin —— <9< =
o 2 — 2
w=sind .

o T

00,0,Q,3,8,6,6

Fig. 1:The approximate view of the most general geodesic 1, means, if is fixed andp varies, then the endpoints of
curve with initial velocity parameters & 0.9 and

v = 0.25in the parameter interval € [0,2]. The
first picture shows the curve in a general view, the
other from the direction of z-axis.

geodesics describe an altitude circle. Similarly we get lon
gitude half-circle for fixedp. The following figures show
our results.

Fig. 3: Geodesic sphere of radius 0.1. The first picture shows thersph a general view, then from the direction of axes
z, y and x, respectively.
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Fig. 5: Geodesic sphere of radius 2.

3 Tranglation curves and spheres

X(t) = 4 (e™-1)
A Riemannian manifold with a transitive group of isome- w
tries is called homogeneous. In a homogeneous space there y(t) = v (ewt _ 1) 7
are postulated isometries, mapping each pointto any point. w
Translations can be introduced in a natural way. Consider zZ(t) =wt ,

a unit vector at the origin. Translations, postulated at the
beginning carry this vector to any point by its tangent map-
ping. If a curvet — (X(t),y(t),z(t)) has just the translated
vector as tangent vector in each point, then the curve is
called atranslation curve This assumption leads to a sys-
tem of first order differential equations, thus translation
curves are simpler than geodesics and differ from them in
most cases (except in spaces of constant curvature).

In the following -as illustration- we show how a translation
curve looks like.

ofg 9, 10,20,30,40,50, 60,7

From [3] we have already known the solution of the above

defined system
X(t) =ue @ | \
/(1) =

(t)=w, Fig. 6: Translation curve with the same initial velocity pa-
rameters as for geodesics above £10.9 and v=
0.25) in the parameter interval € [0,2]. The first
of differential equation which holds for a curve starting at picture shows the curve in a general view, the other
the origin in directionu, v,w): from the direction of z-axis.
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With unit velocity translation curves we can define the
translation sphereof radiusr with centre in the origin of

gsual longitude and altidude parametérand3d, respec- X(9,0) = — cotd cosp (e—rsina _ 1)
tively ( [3]):
y(9,4) = cotd sind (e'sms - 1)
u=cosjcosp  ~MsP<T 2(9,¢) =rsind .
v = cos9dsind —géﬁég
w=sind ; As illustrations we give the following nice pictures.
I AN\
\
_ \
|
H
=S 77

Fig. 7: Translation sphere of radius 0.1. The first picture showssibieere in a general view, then from the direction of
axes z, y and x, respectively.

\
‘\

Fig. 9: Translation sphere of radius 2.
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Space

ABSTRACT

In this study, we generalize the concept of o— distance
which contains both of Taxicab distance and Chinese
Checker distance as special cases to N—dimensional space.

Key words: Taxicab distance, CC-distance, O-distance,
metric, non-Euclidean geometry

MSC 2000: 51K05, 51K99

Tian [9] gave a generalization of both Taxicab and Chi-

Poopcenje a—udaljenosti u n—dimenzionalnom
prostoru

SAZETAK

U ¢&lanku se poopcéuje pojam O— udaljenosti koji taxi
udaljenost i CC-udaljenost sadrZi kao posebne sluéajeve
u N—dimenzionalnom prostoru.

Kljuéne rijeci: Taxi udaljenost, CC-udaljenost,
a-udaljenost, metrika, neeuklidska geometrija

and de(P1,P2) = Ap,p, + (V2 — 1)3p,p,, respectively.

nese Checker distances in the plane, and named it agsee [1], [2], [3], [4], [5], [8]).

a—distance. In [6],a—distance have been extended to
three dimensional space.
a—distance is generalized te-dimensional space.

In the following definition, we introduce a family of dis-
tances inR", which include Taxicab and Chinese Checker
distances as special cases.

Definition:

Let Pl = (X17X2,...,Xn) and P2 = (YLYZa---ayn) be two
pointsin R". If

Dpip, = max{|xy —ya|, X2 — Y2l ..., [Xn — Ynl} = [Xj — V]
and

5P1P2=%|Xi—Yi|7 I={1,2,....n}\{j},

then the function dy : R" x R" — R such that

do(P1,P2) = Apyp, + (seat —tana)dp,p,, O € [0,T1/4],

is called generalized a—distance between points P; and
P..

Generalized Taxicab and Chinese Checker distances be-
tween pointsPp and P inR" are dt (P, P2) = Ap,p, +0p,p,

In this work the concept of Notice that

do(Pl, Pz) = dT(Pl, Pz) and d%l(Pl, Pz) = dC(Pl, Pz).

Also, if dp,p, > 0, then for alla € (0,11/4),

dE(Pj_, Pz) < dC(Pj_, Pz) < dq(Pl, Pz) < dT(Pl, Pz),

wheredg, d. and dr stand for the Euclidean, Chinese
Checker and Taxicab distances, respectively.

Further, ifdp,p, = 0, thenP, andP; lie on a line which is
parallel to one of coordinate axes, and foral [0, 11/4],
dc(P1, P2) = du (P1, P2) = d (P1, P2) = de (Py, P2).

Let | be a line throughP, and parallel tojth-coordinate
axis andl,...,l, denote lines each of which is parallel to
a coordinate axis distinct frofjth-axis. Geometrically, the
shortest way between the poilRsandP; is the union of
a line segment parallel i and line segments each mak-
ing a angle with one ofy,...,l,, as shown in Figure 1.
Thus, the shortest distandg from Py to P, is sum of the
Euclidean lengths of suahline segments.
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Figure 1

The next two propositions follow directly from the defini-
tion of the generalized —distance.

Proposition 1.

The generalized a—distanceisinvariant under all tranda-
tioninR". Thatis, T : R" — R", where

T(X1,X2,. .., %n)= (X1 + a1, X2+ &2,...,.Xn+an), & € R,
does not changethe distance between any two pointsin R".

Proposition 2.

Let Pp = (X1,%2,...,%) and P> = (y1,¥2,...,Yn) be two
pointsin R". If App, = |xj, —yj,| for ji€{1,2,....n},
then
[Xis = Yia| + (sea@ —tane) 5 x —yi| =
> |Xj, — Vi, | + (sea —tana) ¥ [ —il,
el
for 1 ={1,2,....n}\{j1}, I'={1,2,....,n}\{j2}, j2 €
and o € [0,11/4].

Proof: Let P1=(Xq,X2, . ..,Xn) andPo=(y1,¥2,...,¥n)-

If AP1P2:}XJ.1 _y11|'

then a=|xj, —yj,| + (sex —tanor)_zI 1% —Vil.

IS
Letb=|xj, —j,| + (seax —tana) 3 [x —yi|, for j2 1.
el

a—b =[x —yj|+(sex —tana)zm —yi|—
IS

— X, = ¥j,| — (sec-tana) 3 |x —yil
el

= |X11 _y11| + (sea —tana) |X12 _YJ'z} -

- |X12 _yiz‘ — (sea —tana) |X11 _yJ'1|

= (1_ (SECIX —tanor))(\le _y11| - |X12 _yjz‘)-

34

Notice that(1— (seax —tana)) > 0 for alla € [0,1/4] and
(|X11 _y11| - |X12 _yjz‘) >0.Thusa—b>0.
Thatis,|xj, —yj, | + (sea —tanm)_;I X —yi| >
le
> |Xj, = Yj,| + (se —tanat) 3 [x; — i

el
forl ={1,2,....n}\ {j1},I'={1,2,....,n}\{j2}, j2 €1
anda € [0,1/4].

The following theorem shows that generalizeddistance
is a metric.

Theorem 3.

For each a € [0,11/4], generalized o —distance determines
ametric for R".

Proof: We have to show thady is positive definite and
symmetric, anddy holds triangle inequality. LeP; =
(X1,%2, .-, Xn), P2 = (Y1,¥2, ..., ¥n) andPs = (21,22, ..., Z)
be three points iR". Generalizedn—distance between
points P, and P, is  dq(P1,P2) = App, + (Sea@ —
tana)dp,p,, 0 € [0,11/4].

do (P1,P2) > 0 sincelx; — yi| > 0 and(seax —tana) > 0 for
eacha € [0,1/4]. Obviously,dq(P1,P2) = 0 if and only if
P = P,. Sody is positive definite.

Clearly dy(P1,P2) = do(P2,P1) follows from |x —vi| =
lvi —Xi|. That is,dy is symmetric.

Now, we try to prove thatdy(Pi,P2) < do(P1,Ps) +
du(P3,P2) forall P, P,,P; € R"anda € [0,71/4]. For each
o € [0,T/4], andl={1,2,...,n}\ {j},

do(PL,P2) = |Xj—YJH(Sem—tanG)ZIm—in
le
= [xi-zt+z-y|+
+(sew—tana)Z|x4-—24+za—yi|
le
< P-zl+lz-yil+

+(se —tana)Z(IXa —z|+z - Vi)

le

= k

One can easily see thdy satisfies the triangle inequality
by examining the following cases:

Case I: If |xj—z| > [x—z| and |z—vyj| > |z —Vi,
i,j €{1,2,...,n},i# j, then for eachn € [0,11/4], and
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I={1,2,...,n}\{j},
do (P, P2) k
= |xj—z|+]|z—yj|+
+(seca—tana)Z(|xa —z|+1z —Vil)

le

IN

= |x,-—zj\+(sem—tana)Z|x;—za|+
e
+|zj—yj|+(sew—tana)Z|z—yi|
IS
= dq(PL,P3)+da(Ps3,P2).

Case Il If [xj—z| > |x—z| and |z —yj| < |z -V,

i,j€{1,2,...,n},i# |, then there are two possible situa-

tions:
(i) Let |x; —zj| + |zj —yj| > [% —z|+ |z —Vi| . Then for
eacha € [0,1/4],andl = {1,2,....n}\ {j},
do (P, P2) k
= [Xi—z[+[z-yl+
+(seca—tana)Z(|xa —z|+1z —Vil)

le
= |xj—zj|+(sex —tana)Z|x4- —z|+
le

IN

+|zj —yj| +(sec —tana)ZIZi — Vil
le

= da(PL.P3) + |z —yj| +
+(sem —tana)Z|zi =il

le
S dG(P17P3)+dG(P37P2)u
where |zj —yj| + (sec — tanox)zI 1z —yi| < du(P3,P2)
le
because of Proposition 2.

(i) Let |xj —zj| + |zj —yj| <X —z|+|z —yi| . One can
easily give a proof for the situation (ii) as in situation (i)

Case Ill: If |xj—z| < |x—z| and |z —vj| > |z —il,

i,j€{1,2,...,n},i+# ], then there are two possible situa-

tions:
() Let|x; —zj| + |z —yj| > [x — 2|+ |z —yi-
(i) Let|x; —z| + |z —yj| < [ — 2|+ |z —vil.

One can easily give a proof for the Case Ill as in the Case
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Geometry of Real Time Shadows
ABSTRACT

Shadows provide important visual hints about the spatial
relationship between objects. Shadow volumes are one
way to generate sophisticated shadows for use in real time
environments. This paper focuses on the geometric as-
pects which are involved in the creation of the shadow
volume. Speed up techniques like shaders and dual space
approaches for silhouette determination are discussed. Fi-
nally the application of the described methods in a software
for shadow profile calculation is explained.

Key words: Shadow volumes, Dual space, Silhouette
determination, Shader, Real time

Geometrija sjena u realnom vremenu
SAZETAK

Sjene pruZaju vazne vizualne informacije o prostornom
odnosu medu objektima. Tijelo sjene je jedan nadin kako
generirati profinjene sjene za prkaze u realnom vremenu.
U ovom ¢&lanku usredotolilo se na geometrijski aspekt
ukljuéen u stvaranje tijela sjene. Razmatraju se brze i
efikasne tehnike za odredivanje rastavnice preko dva pris-
tupa: dualnog prostora i programa za sjencanje (shadera).
Na kraju je prikazana primjena opisanih metoda u softveru
za odredivanje oblika sjene.

Kljuéne rijeci: tijelo sjene, dualni prostor, odredivanje ras-
tavnice, program za sjenlanje, realno vrijeme

MSC 2000: 51-04

1 Introduction geometry). In the meantime several different shadow map
algorithms have been developed. Both methods have their
Shadows are an important part in computer graphics be-benefits and drawbacks. For a comparison of the pros and

cause they can reveal information that otherwise would not cons of both methods see for example [25].

be ascertainable. Foremost, they reveal the spatialoekati  »c|5ssic” shadow volume algorithms create hard shadows.
ship between objects in the scene. They also disclose newa shadow region is divided into two parts: the region
angles on an object that otherwise might not be visible and\ynich is fully in shadow (umbra) and the region which is
they can also indicate the presence of off-screen objectspartia”y in shadow (penumbra). Hard shadows only con-
These and other visual functions of shadows in computergjst of the umbra area. Soft shadow volume algorithms
graphics are described by Birn in [5]. have been developed among others by UIf Assarsson and
Shadow volumes were first proposed by Crow in 1977 [8]. Tomas Akenine-Moller [21, 1].

With the advent of modern day computer graphic cards,
shadow volumes are now possible in real time. Heidmann . .
[14] adapted Crow’s algorithm to hardware acceleration. 2 Assumptions and Definitions

His method is now known as the z-pass method (because . ]

the stencil buffer is incremented/decremented when a poly- 1€ shadow volume algorithm requires that the shadow

gon passes the depth test). However, the z-pass metho§@sting objects must be a 2-manifold polygon mesh and
does not work correctly if the near clipping plane inter- free of non-planar polygons. 2-manifold means that every

sects the shadow volume. Carmack [6] solved the prob-€dge of the mesh must be shared exactly by two polygons.
lem by using z-fail testing (the stencil buffer is increment Itis also useful to resFrlct oneself tq tnangu]ar meshgs, b
ed/decremented when a polygon fails the depth test). TheCause modern graphics hardware is optimized for triangle
z-fail method still yields incorrect results if the shadogiv ~ Féndering.

ume is intersected by the far clipping plane. This problem Furthermore, all triangles must have the same winding
can be circumvented by moving the far clipping plane to order. For the following discussion a counter clockwise
infinity, as proposed by [9]. winding order and outward pointing normals are assumed.

Shadow maps (introduced by [26]) are image based alter-A silhouette edge is an edge adjacent to one front-facing
natives to shadow volumes (which operate on the objectand one back-facing polygon. A polygon is called front-
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+1 0

near clipping plane +1 1 /0 /near clipping plane

A oo

Figure 1:The z-pass method. The values at the end of theFigure 2: The z-fail method. The values at the intersection
rays represent the values left in the stencil buffer. Note of the ray and the near clipping plane represent the values
that the stencil value of the leftmost ray is wrong due to left in the stencil buffer. This time the stencil value fo th
the clipping of the shadow volume of the sphere at the ray passing through the sphere is correct.

near clipping plane.

facing with respect to the light if the dot-product of its nor  visible object. Figure 1 in addition shows why this ap-
mal and the vector from the light position and a point on proach fails if the shadow volume intersects the near clip-
the polygon is positive. Respectively a polygon is called ping plane.

back-facing with respect to the light if the dot-product is As noted by [3] the front faces must be rendered before
negative. the back facing polygons to avoid shadow counting over-
A border edge is an edge which is only adjacent to one flow. That is, because under OpenGL the result of the
face (which implies that the mesh is open). It should be increment and decrement functions is clamped to lie be-
noted that we can handle open meshes if we treat bordetween 0 and the maximum unsigned integer valde(2
edges as part of the silhouette. The silhouette is the set off the stencil buffer holds bits) [22]. However, render-

all silhouette edges (and border edges). ing the shadow volume geometry twice is a suboptimal
solution. The OpenGL extension EXenciltwo_side

[11] allows separate stencil states for front faces and back
faces to be specified simultaneously. Therefore front faces
as well as back faces can be rendered at once. Though
this time it is not guaranteed that the front facing poly-
gons will be rendered before the back faces. Consequently
the feasibility exists that the stencil value for a partaul
pixel is decremented before it is incremented. We can ac-
count for that option by using another OpenGL extension,
namely EXTstencilwrap [12], which allows stencil val-
ues to wrap when they exceed the maximum and minimum
stencil values.

3 Overview

I will first give an overview of the z-pass algorithm and
then point out the differences with respect to the z-fail al-
gorithm. The basic concept[...] is to use the stencil buffer
as a masking mechanism to prevent pixels in shadow from
being drawn during the render pass for a particular light
source [17]. First of all the stencil buffer is initializedttv
zero and the z-buffer is initialized with the depth values
of the visible objects during a first rendering pass. In this
pass only light-independent attributes are considered (e.
ambient light). Then the shadow volume is rendered with Several authors [4, 3, 6] proposed methods to cap the
writes to the color buffer and depth buffer disabled. This shadow volume at the near plane. However, these are com-
is usually done in two steps. First, the front faces of the putationally expensive and they have robustness problems.
shadow volume (with respect to the camera position) are carmack [6] and others therefore suggested the z-fail algo-
rendered and the stencil buffer is incremented each timeyjthnm. Instead of counting the shadow faces in front of a
the fragment passes the depth test. Second, the back faces, ticular pixel, the shadow faces behind are counted. This
are rendered. This time decrementing the value in the stenyjme the near clipping plane problem is avoided because
cil buffer when a fragment passes the depth test. shadow volume geometry between the eye and the pixel
As shown in figure 1, this leaves non-zero values in the is nonrelevant. Figure 2 shows the z-fail approach. As
stencil buffer wherever the shadow volume intersectsa  already mentioned in the introduction the z-fail approach
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moves the near clipping plane problem to the far plane, discussion) as pointed out by [7]. At the highest level this

which can be prohibited by using an infinite projection ma- hextree ranges from+1,—1,—1,—1) to (1,1,1,1). The

trix (see section 6). space can be repeatedly divided into 16 smaller hextrees
until a small enough partition is reached. A dual edgs

: , then inserted into the smallest subcube which encloges
4 Silhouette Detection as well asr).

To calculate the shadow volume, we first have to determinemSte.ad (.)f using two bounding boxes per ;:ubcube o de-
the silhouette of the shadow casting object. The so-calledte.rmlne if the dual edges hfave'to be verified [7] I use a
brute force method for detecting silhouette edges is to Ioop.d'fferent approach._ For testing i an AAB&\_nd a plgne
through all edges and check the dot-product of the adjacenfnterseCt’ the box diagonal which is mpst aligned with thg
triangles. Since silhouette detection is one of the two majo normal of thg plane has to be foupd first .Second the di-
bottlenecks (beside fill rate consumption), as pointed out agone}ls vert|ce3/(,?m andvmax) are mser}ed into the plane
by [16], it is appropriate to use more sophisticated meth- equation. If the signs of the resu!ts differ or at least one
ods. [2] developed a dual space approach for silhouetteOf them is Zero, then the plane Intersects the box [20.]'
extraction in 3D and [15] used a similar method but moved [20] also points out that the two vertices can be found di-

to four dimensions. Most recently [24] presented a paperrecuy' 'I(;he S|%nts of tltlelfctcr)]mponel?fcs .0]; the ptlage normal
about silhouette extraction in Hough space. are used as a bit mask. IS maskis intérpreted as a num-

ber it can be used as index to an array of AABB vertices.

Because [15] are concerned with non photorealastic ren-Thjs approach can easily be extended to four dimensions.
dering, they determine the silhouette with respect to the gach of the 16 vertices of a 4D cube is stored in an ar-

viewpoint. However, in case of shadows the silhouette de-ay 5o that the minimum vertex is located at index 0 and

pends on the light position. Therefore the viewpoint must the maximum vertex at position 15. Instead of the plane
be substituted with the light position. The algorithm in  normal we interpret the signs of the components ads

[15] is based on the geometric concept of duality in a pro- g pit mask. The indek of Vmin Can then be calculated as

jective space and the following characterization of the sil j — g.sgn(L,) +4- sgr(Ly) + 2-sgn(Ly) + sgr(Ly) where
houette: IfL is the homogeneous light position, the set of

silhouette points determines a general c@ng@vith apex

L) tangent to the differentiable surfadé If L’ is the im- sgn(x) = {
age plane of. when applying the duality map, the image

C' of C is the intersection of the plarie’ with the dual  The v, vertex can be found by inverting the bit mask.
surfaceM’. C' can be identified with the silhouette set of The dual edges of a subcube must only be testdd:- if
surfaceM. A pointv = (w,W,Vz, 1) of M belongs to the .. ~— 0 andL - viax < O O vice versa.

silhouette set ifa—v)-n =0, wheren = (ny,ny,n;,0) is

the unit normal vector to M at anda = (ax,ay,a,,1) is

a point on the tangent planeat The tangent plane at

is mapped onto a dual poiat = (vy,\, vz, —Vv-n). There-
fore the silhouette set &fl is characterized by the equation
L-v = (L —v)-n=0. Consequently, the problem of find-
ing the silhouette of a differentiable surface is reduced to
the problem of intersecting a plane with a surface.

Since | am concerned with polyhedral surfaces the prob-5 Shadow Volume Construction

lem can be reformulated in a way as described by [15].

The dual surface is built by mapping each ventexf the Once the set of silhouette edges is determined the edges
mesh onto a homogeneous point= (Vy,Vy,Vz, —(V-n)). must be extruded to form the shadow volume. As described
The dual surface has the same connectivity but differentby [17], no matter what finite distance silhouette edges are
vertex positions. A dual edge of an edgee = (v1,V2) is extruded, it is still possible that the shadow volume does
a tuple(v},v5). An edgee belongs to the set of silhouette not reach far enough to cast a shadow on every object in
edges ifL -v) >=0 andL -V, < 0 or vice versa. Each the scene that should intersect the volume. This problem
V' is then normalized (using the Euclidean norm) to make worsens when the light source is very near to the shadow
sure that each point of the dual surface lies inside the unitcasting object, but it can be circumvented by using an infi-
hypercube. This allows us to store each dual edge in a 4Dnite projection matrix. How this matrix can be obtained is
variant of an octtree (I will call it hextree in the further described in section 6.

0 x>=0
1 otherwise.

Building the dual surface and inserting the dual edges into
the hextree can be done once in a preprocessing step as
long as the connectivity of the object does not change. Fur-
thermore silhouette detection must only be performed if
the object position changes with respect to the light posi-
tion.

1AABB stands for Axis Aligned Bounding Box. Assuming an AABBValid in our case because the hextree is axis aligned.
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computationally more expensive and should only be used
when necessary. To determine whether the shadow volume
‘ is clipped by the near plane the near clip volume has to be
constructed. The near clip volume is bound by the planes
ey | which connect the near rectangle to the light position, as
‘ shown in figure 3. The near rectangle is the area cut out of
the near plane by the four side planes of the view frustum.
Only an object which is inside this near clip volume can
cast a shadow onto the near clipping plane. For a compre-
hensive description see [17].

Silhouette edge extrusion can now be done on graphics
hardware to remove the burden from the CPU. The follow-
ing Cg vertex shader extrudes a verex (Vy, Vy, Vz, Vi) if

/ near clipping plane vy = 0 otherwise the position is just passed through.

float4 lightToVertex = IN.position—

lightPos;
\/ float m = 1 — IN. position .w;
P float4 outx = IN.positiom(l—m) +
lightToVertexsm;

Figure 3:An Object O is casting a shadow onto the near outx.w = IN. position .w;

clip plane since it partially intersects the near clip volem
(shaded) /I transform position to homogeneous clip

space
) ] OUT.HPOS = mul(ModelViewProj, outx);
To make the z-fail algorithm work correctly, the shadow

volume must be a closed volume where all polygons must . ) _ )

have a consistent winding order. A complete shadow vol- IN- Position is the vertex coordinate anlgghtPos s the po-
ume consists of: (1) the front cap (consisting of all front- Sition of the point light. If shaders are used, one has
facing polygons), (2) the extruded silhouette edges and (3)to take care of transforming the vertex position into ho-
the back cap. It is notable that the extrusion of the ge- mogenous clip space, therefore the multiplication with the
ometry depends on the light source. For a point light the modelview-projection matrix. To make this approach work
vertices of the silhouette edge must be extruded to infinity correctly, each vertex of the silhouette must be passed
along the vector from the location of the point light to the twice to the shader. Once with, = 1 and once with

vertex (see figure 4). N = (v, Vy,Vz, 1) is the position o, '— 0. The extrusion for a directional light looks simi-
the vertex to be extruded ahdis the position of the point lar.

light then the extruded vertex = (Vx — Ly, — Ly, Vv, —

L;,0).

For a directional light all extruded points converge to 6 Infinite Projection Matrix

a single point in infinity (see figure 4) at position

(—Lx,—Ly,—L,0). This implies that the back cap is not The OpenGL projection matrix is defined as [22]:
necessary for directional light sources. The back cap con-

ventionally consisted of all back-facing polygons progett 2n r+l 0
away from the light [9, 17]. But since the back cap is at in- r(‘)' 2n {;t', 0
finity the shape does not matter [19]. The only constrain p = t-b —Ean) ot
which remains is that the back cap must actually close the 8 8 f—; fan

volume. This can be achieved with a simple triangle fan
constructed from the extruded silhouette edges [19, 16].
The z-pass algorithm doesn’t use caps, therefore the incor/N this matrix f is the distance from the viewer to the far
rect results if the shadow volume intersects the near clip clip plane, n the distance to the near clip plane and r and |
plane (see [9] for details) or the viewpoint is inside the are the respective distances to the left and right clip plane
volume. From this point it is clear that the z-fail method is t and b are the distances to the top and bottom clip plane.
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Figure 4:Silhouette extrusion for a point light (left) and for a ditemal light (right)

We can obtain the infinite projection matrix by calculating
Pe = fIim P which yields

&Aoo B0
2. b
p—| O & 3 O
0 0 -1 -2-n
0 0 -1 0

An infinite projection matrix reduces the depth buffer pre-
cision only marginally as pointed out by [9]. However,
if you are concerned about this loss you can use Nvidia's
NV _depthclamp [23] extension. If depth clamping is en-
abled, the near and far clipping plane are disabled for ras-
terizating geometry primitives.

7 Rendering

Here | present the necessary steps to render shadow vol
umes with OpenGL. First we render the scene with enabled
depth writes, backface culling and with ambient lighting
only (light independent attributes). This guarantees that
the depth buffer is initialized with the correct depth value
Afterwards we disable writes to the depth buffer and turn
off ambient lighting.

glEnable (GLLIGHTING) ;

glLightModelfv (GLLIGHT _MODEL_AMBIENT,
ambient) ;

glEnable (GLDEPTHTEST) ;

glDepthFunc (GLLESS);

glEnable (GLCULL_FACE) ;

glCullFace (GLBACK) ;

drawScene () ;
glDepthMask (GLFALSE) ;

glLightModelfv (GLLLIGHT _MODEL_AMBIENT,
zero);

The stencil mask has to be calculated separately for each
light source.

for each

{

light source

First we clean the stencil buffer, configure the stencil test
so that it always passes and disable writes to the color
buffer. We will take advantage of two side stencil testing so
that we only have to render the shadow volume of each oc-
cluder once. Therefore the stencil operation is set to incre
ment and decrement for front- and back-facing polygons
respectively — if the depth test fails. Culling is also tuine

off because front as well as back faces must be rendered at
the same time.

glClear (GLSTENCIL.BUFFERBIT) ;
glEnable (GLSTENCILTEST);
glStencilFunc (GLALWAYS, 0, "0);
* glStencilMask (70) ;
glColorMask (GLFALSE, GLFALSE, GLFALSE,
GL_FALSE) ;

glActiveStencilFaceEXT (GIBACK) ;

glStencilOp (GLKEEP, GLINCRWRAPEXT,
GLKEEP) ;

glActiveStencilFaceEXT (GLIFRONT) ;

glStencilOp (GLKEEP, GLDECRWRAPEXT,
GLKEEP) ;

glDisable (GLCULL_FACE) ;
glEnable (GLSTENCILTEST.TWO_SIDE_EXT) ;

Now the shadow volume of each occluder in the scene is
rendered. Afterwards culling is turned on and the stencil
test is disabled. At that time the stencil buffer holds the
correct information about which pixels are in shadow and
which aren't.
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for each occluder Scene Number of triangles? | ~time [ms]
Eiffel Tower 11353 (11155) 4.584
renderShadowVolume (occluder); Industry Area 13615 (13585) 7.299
} Uniqua Building 182038 (147296) | 44.486
Uniqua Building 182038 (182038) | 58.666

glEnable (GLCULL_FACE) ;

glDisable (GLSTENCILTEST.TWO._SIDEEXT) ; Table 1: Performance with brute force silhouette detection

The whole scene is now rendered again. This time the cur- 2First number: total triangles in the scene. Second numbiengles of
rent light is enabled and configured (all light dependent S"ad0W casting objects

attributes). Stencil testing is configured so that only |sixe Scene Number of triangles | ~time [ms]
with a zero stencil value are rendered. Equal depth testing  Eiffel Tower 11353 (11155) 4.236
is used so that only visible fragments are updated. Since Industry Area 13615 (13585) 5.799

this pass adds to the ambient scene already in the colof Uniqua Building| 182038 (147296) | 39.331
buffer, additive blending must be enabled as well as writes| Uniqua Building 182038 (182038) | 48.872
to the color buffer. After rendering the scene, blending is
disabled and the depth function is restored to less depthTable 2: Performance with dual space silhouette detection
testing.

The application can detect the silhouette either by brute
glEnable (light); force or with the above described dual space approach. If
configureLight(light); the graphics card supports vertex and fragment shaders, sil
houette extrusion and per pixel lighting is performed on the
GPU. Otherwise the CPU handles the extrusion and stan-
dard OpenGL lighting is used. Double sided stencil testing

glEnable (GLBLEND) ;
glBlendFunc (GLONE, GLONE);
glColorMask (GLTRUE, GLTRUE, GLTRUE,

GL.TRUE) : is performed if EXTstenciltwo_side is supported. The z-
) ' fail algorithm is only applied if necessary (see section 3).
glStencilFunc (GLEQUAL, 0, "0); Figures 5to 7 show some sample scenes. Table 1 shows the

glStencilOp (GLKEEP, GLKEEP, GLKEEP);

giDepthFunc(GLEQUAL) - time needed for brute force silhouette detection for each

scene and table 2 for dual space silhouette detection, re-

renderScene () : spectively. All measurements were taken on a Pentium 4

3.4Ghz processor with 1GB memory. For each scene a
glDisable (GLBLEND) ; hextree with a fixed depth of four was chosen for the dual
glDepthFunc (GLLESS) ; space approach.

}

After the above steps have been carried out for all lights, 9  Future Work
stencil testing is disabled and writes to the depth buffer ar

enabled. The results show that silhouette detection can greatly im-
glDisable (GLSTENCILTEST); prove performance. As future work it would be interest-
glDepthMask (GLTRUE) ; ing to see how Hough space silhouette finding [24] can

further speed up the process. At this time no techniques

to reduce fill rate consumption are implemented. Lengyel
8 Application: Shadow Profiles [17] describes how OpenGLs scissor rectangle support can

be used to cut down the fill rate penalty for rendering the

tion for calculating shadow profiles in real time. A shadow 9enerate fragments outside the scissor rectangle. The scis
profile shows the cast shadow of an object over a specificSOr rectangle can be applied on a per light basis or per ge-
time period. This is, for example, of concern for architects ometry basis, as pointed out by [18]. [10] suggest a depth
to find out how long the surroundings are obscured by a bounds test for stencil writes. This idea is based on the ob-
building. After providing the required information needed servation that some depth values can never be in shadow, so
for computing the position of the stiflatitude, date, time)  incrementing and decrementing the stencil buffer is need-
and the time period, the shadow profile is calculated. less.

2See [13] for a description of the calculation
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Figure 5:left: Casted shadows of an industry area located at a lagtafi45.2 north on September 18th at 3pm. middle:
Visualization of the shadow volumes (yellow). right: Thaddw profile of the scene over a time period of three hours
(12pm until 3pm in 30 minutes time steps).

Figure 6:left: Shadow of the Eiffel Tower in Paris (latitude of 48r&rth) on September 18th at 2pm. middle: Visualiza-
tion of the shadow volume (yellow) and the silhouette edgiek). right: Shadow profile over a time period of four hours
(10am until 2pm in 30 minutes intervals).

Figure 7:Proposal for the Uniqua building in Vienna (48.2orth) by Hans Hollein. A color was assigned to each struadtur
component. left: Only the facade (yellow) and the concrgteqn) is casting a shadow. middle: The complete building
is casting a shadow. right: The shadow profile over a timequkof eight hours (9am until 5pm in 1 hour intervals) on
September 18th.
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Conclusions

9]

In this paper | have presented the necessary steps for a ro-
bust implementation of stencil shadow volumes. Stencil
shadow volumes suffer mainly from two bottlenecks: (a)

fill rate and (b) silhouette detection. The latter was dis-
cussed in section 4. Modern graphics hardware can tak

over computations which formerly had to be performed on
the CPU, e.g. silhouette extraction. Code snippets showed
how stencil shadows can be implemented with OpenGL.
Extensions to OpenGL provide further ways to improve
performance.
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LiveGraphics3Din Spherical Astronomy

ABSTRACT

This paper describes development of interactive web ap-
plication designed for coordinate’s recalculation within the
celestial coordinate systems. Furthermore, this application
is also a simple tool for the graphical display of the celestial
objects location (coordinates). Recalculation of coordi-
nates and visualization of the celestial coordinate systems
capable of magnification, rotation and perspective change
makes this interactive application suitable for e-learning.

Key words: celestial coordinate systems, recalculation of
coordinates, visualization, webMathematica, LiveGraph-
ics3D, e-learning.

Primjena webMathematicé LiveGraphics3D
u sfernoj astronomiji

SAZETAK

U radu je opisana interaktivna internetska aplikacija nami-
jenjena preraunavanju koordinata u nebeskim koordinat-
nim sustavima. Aplikacija je ujedno jednostavan alat
za grafi¢ki prikaz poloZaja (koordinata) nebeskih tijela
uz mogucnost rotacije, povecanja i promjene perspektive
grafickog prikaza. Preradunavanje koordinata i vizuali-
zacija nebeskih koordinatnih sustava omogucuje primjenu
ove interaktivne aplikacije u e-obrazovanju.

Kljuéne rijeci:  nebeski sferni koordinatni sustavi,
preracunavanje koordinata, vizualizacija, webMathemat-
ica, LiveGraphics3D, e-obrazovanje.

MSC 2000: 97U80, 85-04

1 Uvod je razvijena uMathematicii webMathematici pomocu

Java applet-aiveGraphics3D

Informacijske i komunikacijske tehnologije (ICT) u suvre- Aplikacija je izratena sa ciliem poboljsanje kvalitete na-

menim oblicima ugenja vazno su sredstvo za poboljSanjegiaye iz geodetske astronomije na Geodetskom fakultetu u
kvalitete obrazovanja. Ostvarenjem potrebne infrastruk- Zagrebu.

ture (tehnicka opremljenost, brze veze za pristup interne

i sustavi za upravljanje u€enjem) stvoren je temelj za pri-

mjenu e-obrazovanja - uenja i podutavanja potpomognu-2 Mathematica webMathematica

tog ICT-eom i internetom [4]. StruCnjaci pred\aju da ce

se e-obrazovanje na razliCite nacine upotrebljavatimmsv ~ Za to€nost grafickog prikaza nebeske sfere s trazenim
vidovima obrazovanja. kruznicama programski jezik mora sadrzavati vektorski

Akademske godine 2005/06, tadasnji studenti trece go_nai’:in prikaza grafickih elemenata u trodimenzionalnom
dine Geodetskog fakulteta u Zagrebu, izradili su rad [1] Prostoru, odréene naredbe potrebne za pretvorbu ko-
nagragn Dekanovom nagradom. Na temelju tog rada ordma,ta iz .sfernog u K_grtezugv koor(_jlnatnll §L{stay te
izradena je internetska interaktivna (on-line) aplikacija Mgucnostimplementacije grafickog prikaza i rieSerga n
pomotu koje korisnici mogu jednostavno i trenutagno 'Nternetu.

preracunati koordinate u razli€itim nebeskim koordiriat Mathematicaje softver tvrtke Wolfram Research Kkoji
sustavima i graficki ih prikazati. Osim toga, naknadno u sebi sadrzi numericko i simbolicko racunalo, grafick
je izratena i interaktivna aplikacija koja omogutuje sustav, programski jezik, dokumentaciju i naprednu
vizualizaciju odabranog nebeskog koordinatnog sustava uzmogucnost spajanja s drugim aplikacijama. Jedna od
mogucnosti rotacije, povetanja, promjene perspektive itakvih aplikacija jewebMathematicajoS jedan proizvod
pomicanja/mijenjanja polozaja nebeskog tijela. Aplilac  tvrtke Wolfram Research [5].
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webMathematicaomogucuje izvrSavanje interaktivnih Vizualizacija je moguca tek kada sve tri koordinate iz
raCunanja i vizualizacija na internetskim stranicama, a sve tri liste spojimo u urdene triplete funkcijonTrans-
takader i brzo stvaranje te distribuiranje rjeSenja racuaanj pose Horizont iscrtavamo spajanjem tih toCaka duzinama.
u mrezi servera na kojem je postavljena. Nadalje, sadrziPrikazani su tripleti prvih pet toCaka:

mogucnost racunanja funkcija za razvijanje tehnickih

rieSenja lfoja dopuét'zilju izradu tgvrlni(;kog Treinogi§arv {Cos[lo]’ —sin[lo],o},
koji ukljucuje numericke, simbolitke i graficke apliéige 18 18
za rjeSavanje svakodnevnih ragunalnih problema. {1,0,0},

{cog{gg)-sinlze .0,
3 lzrada programskog koda i m, . T
implementacija na internet {cosgglsinlgg- O

oY o
Pocetnu ideju o prikazu nebeske sfere kao cjelovitog ob- {COQGO]’sm[GO]’ b

jekta (mogucnost koju podrzava programski jeithe-  7aqatak je prikazati nebesku sferu s ishodistem u sta-
maltice Sphere [r,m,n]), zamjenjujemo prikazom nebeske j5jixnoj totki, glavne totke, pravce i kruznice nebesk
sfere konturnom kruznicom u prostoru, zbog lakSe ma- sfere i polozaj nebeskog tijela sa zadanim/izratunanim
nipulacije dijelovima grafickog prikaza. Toj kruznici  sfernim koordinatama. Koordinate nebeskih tijela mogu
pridruzujemo pravac zenita (pravac koji spaja zenitinadi - pitj zadane u razligitim koordinatnim sustavima. Ovom
pravac nebeske ili svjetske osi, te ravninu nebeskog ekva-ap|ikacijom moguéa su preratunavanja koordinata izmed
koji se nalazi u sredistu nebeske sferBladir je tocka  ekvatorskogd, 3) koordinatnog sustava.

nebeske sfere dijametralno suprotna zeniNebeska os .. .
Malu kruznicu nebeske sfere, paralelnu s ravninom ho-

je zamisljena os koja nebesku sferu probada u Sjevernomrizonta nazivamalmukantaratom Sve tocke almukan
i juznom nebeskom polu, a na kojoj lezi Zemljina os :

rotacije. Ravnina nebeskog ekvatoja ravnina okomita tarat.a Jedn_ako_su ud_aIJ(_ane od tocke zethq Kutnu
A SR udaljenost izméd zenita i almukantarata nazivanzen-

na nebesku os i u njoj lezi stajaliste. [3] . . ) . )

itna daljina z Veliku kruznicu nebeske sfere koja pro-
Sve ravnine ili kruznice na grafickom prikazu dobivene su |azi kroz zenitZ i nadir Z/, a okomita je na horizont
pomotu trigonometrijskih funkcija, a iscrtane su pomotu nazivamovertikal. Kut izmet stajalisnog meridijana i
malih duzina Cije granicne tocke odigemo pomicanjem  vertikala (od juzne totke horizonta u smjeru kazaljke
kuta na nebeskoj sferi za po jedan stupanj. na satu) nazivamazimutom A Deklinacijska kriznica

Slijedi kdd za iscrtavanje konture horizonta (horizontge ~ J& Velika kruznica nebeske sfere koja prolazi nebeskim
lika kruznica nebeske sfere koja nastaje presjekom ravnin PolovimaPy i Ps, a okomita je na nebeski ekvator. Kutnu

koja prolazi stajalistem, a okomita je na pravac zenita). ~ Udaljnost u smjeru zapada uzduz nebeskog ekvatora od
stajaliSnog meridijana do deklinacijske kruznice zoeem

x2=Table [Cos [i%Pi/180]%Cos [0],{i,-1,360}1; satnim kutom t Dnevna paralela je kruznica nebeske
y2=Table [Sin[i%Pi/180]%Cos[0],{i,-1,360}]; sfere paralelna s nebeskim ekvatorom, a kutnu udaljenost
22=Table[Sin[0],{i,-1,360}]; od nebeskog ekvatora do dnevne paralele nazivdeks
horizont1=Transpose [{x2,y2,22}]; linacijom &. Kutnu udaljenost mjerenu u suprotnom sm-
horizont=Graphics3D[{AbsoluteThickness[2], jeru od kazaljke na satu uzduz nebeskog ekvatora, od pro-
RGBColor[0,0.5,0],Line [horizont1]}] lietnog ekvinocija (presjeciSte ekliptike i nebeskog &kv

tora) do satne kruznice, nazivamektascenzijonu. Sta-
U ispisanom kddu2, y2 i z2 su liste koordinata to€aka na jalisni meridijanje velika kruZnica nebeske sfere koja pro-

konturi horizonta. Lista prvih 5 ¢lanowekoordinate: lazi nebeskim polovima, zenitom i nadirom, najvis@n
najnizom@ tockom nebeskog ekvatora te tockom sjevera
L L n n Nijugas
{005[180],1,coq180],cos[90],cos[60]}.

Neke kruznice nije bilo jednostavno matematicki defini-
rati, na primjer kruznicu satnog kuta. To je izvedeno

LT T, T TT pomocu srediSta kruznice i dviju njenih toCaka €ije- ko
{=sinl3gg): 0.sinl 5l sin(gol sin[=71}- ordinate mozemo jednostavno trigonometrijski definirati
Ravnina kruznice odrexha je radij vektorima tocaka na
kruznici iz njenog sredista.

Lista prvih 5 Clanovy koordinate:

Lista prvih 5 Clanova koordinate:

{0,0,0,0,0}. Slijedi dio koda za iscrtavanje kruznice satnog kuta.
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ni1=Cross[r1,r3];
nml=Sqrt[(n1[[1]])"2+@1[[2]1]) " 2+(n1[[3]])"2];
n01=n1/nml; ar=rl; br=Cross[nO1,ar];
arl=Sqrt[(ar[[1]1])"2+(ar[[2]])"2+(ar[[3]1])"2];
br1=Sqrt [(br[[1]]) "2+ (br[[2]]) "2+ (br[[3]])"2];

a=ar[[1]1]#Cos[(i)*Pi/180]+br [[1]]*Sin[(i)*Pi/180]
b=ar[[2]]*Cos[(1)*Pi/180]+br [[2]]1*Sin[(i)*Pi/180]
c=ar[[3]]*Cos [(1)*Pi/180]+br [[3]]*Sin[(i)*Pi/180]

x9=Table[a,{i,-1,360}];

y9=Table[b,{i,-1,360}]1;

z9=Table[c,{i,-1,360}];

satniKUT1=Transpose[{x9,y9,29}];

satniKUT=
Graphics3D[{RGBColor[1,0,0],Line[satniKUT1]}]

Konatno graficko rjeSenje zadatka sadrzi ravninu hori-
zonta (zeleno) i ravninu nebeskog ekvatora (ljubi¢asto),
kruznice zadanih (obojene plavom bojom) i racunanih
veli€ina (obojene crvenom bojom), mjesni meridijan (to
je ujedno i kontura nebeske sfere), pravac zenf#')(
i nebesku ili svietsku osRyPs). Podebljane linije

; oznacavaju zadane ili racunane veliCine, uz koje slojeas

; koja ih opisuju. Nebeska sfera sadrzi oznake za strane svi-

; jeta, nebeske polove te polozaj zvijezde obojene zutom bo
jom (Slika 1).
Potrebno je napomenuti da ¢e zadane velicine uvijek biti
obojene plavom, a raCtunane veli¢ine crvenom bojom.
Stoga €e na grafickom rjeSenju boja pojedinog elementa
(kruznica, dio kruznice, slovo, strelica) ovisiti o vrga-

; datka.

Opis oznaka

ravnina horizonta
ravnina nebeskog ekvatora
almukantarat

zenitna daljina (z)
vertikal

azimut (A)
deklinacijska kruznica
satni kut (t)

dnevna paralela
deklinacija (8)

* pravac koji spaja zenit (Z) i nadir (Z')
pravac koji spaja sjeverni (P,) i juzni pol (Py)

* najviSa (Q) i najniza (Q') toCka nebeskog ekvatora

glavne strane svijeta (N, W, E, S)

Slika 1
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Nakon izrade programskog kdda Mathematici bilo tat, prikazan na internetskoj stranici, namijenjen je kori
je potrebno ostvariti vizualizaciju preko interneta. sniku.

IzvrSavanje programskog kdddathematicepreko inter- o . ) ] o N
neta (on-line) moguée je samo uz upotreibMathema- Aplikacija za preracunavanje koordinata i njihovu vizual

tice. zaciju nalazi se na adresihttp://webmath.grad.hr:8180/

Kako bi programski kéd bio prepoznatliwebMathe-  webMathematica/geodezija/stranica/ga.html
matici, koja predstavlja vezu iznadel web servera i pro-
gramaMathematica potrebno ga je preraditi te preba- . . . i : ;
citi u jsp (JavaServer Pages) datoteku. Na taj nacin linija, tocak_a, SIO\_/a’ srgfura '_ strehcg. .Tajer. | upute
omoguéujemo serveru da uz pomegebMathematice 22 rukovanje trodimenzionalnim grafickim objektom kao
izdvoji iz stranice matematicke naredbe i proslijedi ih NPr. povecanje i smanjenje, promjena perspektive i rgtaci
Mathematicj koja serveru vraca rezultat. Dobiveni rezul- (Slika 2).

Na stranici nalazimo i legendu - opis i objaSnjenje boja

Prikaz nebeske stere Opis boja 1 krrvulja

Grafitko rjefenje cijelog zadatka sadri:

W Kompletne upute za konistenge
LiveGraphics3D appleta

Slika 2

IAutori zahvaljuju dr. sc. Sonji Gorjanc i Vladimiru Beni¢dipl. ing. mat. s Grdevinskog fakulteta Sveugilista u Zagrebu koji su im ol
realizaciju projekta na web serveru njihovog fakulteta.
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4 Vizualizacija nebeskih koordinatnih
sustava

Zavizualizaciju pojedinacnih nebeskih koordinatnihtatis

va (bez preratunavanja koordinata) upotrebljavan je Java
appletLiveGraphics3D S njime moZemo ubrzati proces
stvaranja zahtjevnijih interaktivnih prikaza te definirat
kompleksne manipulacije nad njima, bez potrebe kreiranja
grafiCkog sadrzaja u Javi, Flash-u ili nekom drugom pro-
gramskom jeziku.

Pn 0
N zZA(]
Q
5 30
60—
E
N i S 90
120
150
Q
Ps 180J
-
360 315 270 225 180 135 90 45 0
L 1 1 1 1 1 1 1 J
Slika 3a

StatiCan prikaz odabranog koordinatnog sustava (Slika 3a
nije osobito zanimljiv. Ono Sto ga c¢ini “zivim” (Slike
3b, 3c i 3d) je mogucnost pomicanja tocke (koja pred-
stavlja zvijezdu) neovisno o cijelom prikazu, ali ovisno
o kruznicama koje ta toCka odteje (vertikal i almukan-
tarat). Sljedete kontrole to omogucuju (“Click” pred-
stavlja pritisak lijevog gumba misa):

e Click na Zutu to€ku i njenim pomicanjem mijenjamo
poloZaj svih kruznica koje ovise o poloZaju te tocke

e Click negdje drugdje i pomicanjem miSa rotiramo ci-
jeli prikaz

e PuStanjem gumba mi%a dok ga pomi¢emo dovodimo
cijeli prikaz u rotaciju; click bilo gdje na prikazu i
rotacija prestaje

e Pritiskom Shift tipke, click i vertikalnim pomica-
njem misa povetavamo i smanjujemo prikaz

e Pritiskom Shift tipke, click i horizontalnim pomica-
njem miSa rotiramo prikaz oko osi okomite na ekran

e Pritiskom tipke Home vratamo na originalni prikaz
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~ 60

~ 90
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180

0

7t
N b

7
S .
P74

150~

Ps 180

360 315 270 225 180 135 90 45 0
L 1 1 1 1 1 1

Slika 3b
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Slika 3d
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Pisanje programa u bilo kojem softveru koji omogucava grafickim prikazom (rotacija, povetanje, promjena per-

ovakvu “zZivu” vizualizaciju bilo bi vrlo slozeno. Pro-
ces stvaranjéiveGraphics3Dprikaza ne zahtijeva znanje
Jave. Bitno je napomenuti ddathematicanije potrebna
za samu kreacijlLiveGraphics3Dappleta, jer se ulazni
podaci mogu i ru¢no upisati. No, pomodlathematice
lakSe je generirati ulazne podatke za sloZenije objdhte.
bi izradili takav applet potrebno je datotekive . jar sa
stranice “LiveGraphics3D Homepage” staviti u isti direk-
torij kao i HTML datoteku koju smo prethodno kreirali.

HTML datoteka treba sadrzavati, osim izgleda stranice, i

potreban racunalni kdd koji te omoguciti prikaz apalet

[2].

<applet archive="live.jar" code="Live.class"
width="500" height="500">
<param name="INPUT_FILE"
value="pomicanje_fi_z_A.1g3d"/>
<param name="INDEPENDENT_VARIABLES"
value="{xK -> 0.383022,
yK -> 0.663414,
zK -> 0.642788}" />
<param name="DEPENDENT_VARIABLES"
value="{
z -> —(ArcSin[zK]*180/Pi - 90),
A -> ArcCos[xK/(Cos[(90 + =z)*Pi/180])]1*180/Pi,
zVrijednost-> Round[10%z]/10,
AVrijednost->Round [10*A]/103}" />
</applet>

5 Zaklju cak

Pretrazivanje i prikupljanje informacija, rjeSavanjeple-

ma i samostalno u€enje oslanjati ¢e se u buducnosti naj-

vetim dijelom na internet. Stoga je vrlo vazna primjena
informacijske tehnologije (ICT) u znanstvenim, nastavnim
i drugim aktivnostima.

spektive i drugo), te

zivom” vizualizacijom nebeskih ko-
ordinatnih sustava omogucuje primjenu ove interaktivne
aplikacije u e-obrazovanju. Precizno preracunavanje ko-
ordinata u nebeskim koordinatnim sustavima potrebno je i
profesionalnim astronomima ali i naprednim amaterima.
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The art of Tamas F. Farkas
http://www.farkas-tamas.hu/

Tamas F. Farkas has been conducting researches on therdoendeen non-traditional geom-
etry and spatial visualisation for 30 years.

His art opened new vistas into an impossible world, partligigher dimensions, partly in ge-

ometric structures not realisable even in higher dimerssidviaking visible spaces, that are
non-Euclidean, beyond-traditional geometries, multirelnsional, and not realisable in the real
world, his works attract the interest not only of geometryt, &lso of physics and crystallogra-
phy, i.e., of sciences searching for the structure of matter

His graphical life-work follows individual paths, he did join any designated artistic move-
ment, school. The roots of his graphical works go back teedkffit directions. They are fed on
partly from the arts (e.g., Escher), partly from the scisn@eg., multidimensional geometry,
the world of abstract symmetries).

His works represent the joint beauty of human thinking andumaé creativity. His graphical
world is not one of simple play with forms and colours, rathes built by grave scientific
regularities.

The shape, composed of continuous quadratic prisms, metuinto itself, partly is a self-
imposed visual delimitation, a self-chosen basic unit oftasymbols, partly it determines the
nearly infinite abundance of regularities, what he is abléépict on the plane, within and
beyond the limits of traditional geometry.

His form- world is composed of one of more (2, 3, 4, 6) contimioclosed quadratic prism
lines woven into themselves, each returning into itselieSehlines, woven also into each other,
compose a system characterised by an internal regulariplyig the regularities developed
by himself, he creates more and more complicated structwitrsn the limits of the representa-
tion in 2 dimensions. At the same time, his forms seem to eeteogn the plane into the space
before the spectator’s eyes. These complicated strudtesgstheir perspicuity and can easily
be surveyed by the general observer, because order and sgnpreyail in them. He applies
most often the 2-, 3-, 4- and 6- fold rotational symmetriesl ia certain cases mirror-symmetry
from among the possible geometrical symmetry transfoonati

Another cluster of Tamas F. Farkas’ works is manifestedrahitéectural-like graphics. He
follows the road paved by the impossible building represtionis of M.C. Escher... In his
graphics there appear clear structures, without any mederéo a real environment. The pure
geometric shapes make him free to construct a richer formdwol hus he operates with a
wide set of symmetry transformations, mainly rotations imtiple dimensions. The result is a
fantastic beautiful, imaginary world, much more variegateat our real one, built of impossible
structures. A third cluster of his works, that deserve sgienentioning here, is a spatial world,
whose various structures are formed by the rotation of @irtubic units.

Any catalogue or exhibition can display only a selectiomframong the spatial variations and
colour world of his graphical units. This beauty, paintedhoy on canvas, has been admired
in many exhibitions both in his native country, Hungary, émelworldwide, from Washington,
D.C. to Israel, and from Japan to Italy.

The different graphics, hyperspace structures by Farlasgleither stairs-like or constructed
by line tracing, allow many interpretations. They were preed in two books dedicated to M.C.
Escher (ed. D. Schattschneider) and in two volumes on vikkusibns ( by A . Seckel). Several

issues of the journal Symmetry have been illustrated by faiphics. Logos of the L'Oreal Art

and Science Foundation, the International Symmetry Fdiomaand the Symmetry Festival
series are designed by T.F. Farkas.

According to the common belief, this world is too complichte be represented simply, not
even to attribute an internal structure to the represengetts. The pictorial world of Tamas
F. Farkas breaks this taboo.

His images preserve openness for new developments in sci€hey evoke associations in the
mind. They generate thoughts in laypeople and inspire itlegigecialist spectators.

He provides us with the appearent illusions that we undedssamething of nature, although
we are 'only’ enjoying his art.

Extracts from the text by GY ORGY DARVAS
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