[1] Božikov, Z., Abelian Singer groups of certain symmetric block designs, Radovi Mat.vol. 1(1985), 247-253.
[2] Božikov, Z., The classification of Hadamard block designs H(27) on which an elementary abelian Singer group operates, Punime Mat. No. 1(1986), 43-48.
[3] Božikov, Z., Symmetric block designs for (85,28,9) with a Frobenius group of order 34, Singer group operates, Punime Mat. No. 1(1986), 83-87.
[4] Božikov, Z., Some new symmetric designs for (31,10,3), Glasnik Mat. 24(44)(1989), 471-489.
[5] Božikov, Z., On symmetric block designs for (115,19,3) with a Frobenius group F19· 3, Radovi mat. vol. 8, (2)(1992), 29-35.
[6] Božikov, Z., On the problem of existence of biplanes with parameters (301,25,2), Rad HAZU 472(1997), 107-110.
[7] Božikov, Z., Symmetric designs with parameters (69,17,4) and F39 as a group of automorphisms, J. Comb. Designs, vol. 6(4) (1998), 231-234.
[8] Božikov, Z., On symmetric designs with parameters (101,25,6), KoG 3(1998), 11-12.
[9] Z. Božikov, A new Symmetric Design with Parameters (176,50,14), J.Comb.Designs 5(2000), 387-390.
[10] Božikov, Z., Janko, Z., Finite 2-Groups G with Ω3 (G) ≤ 25, J.Group Theory 7(2004), 65-73.
[11] Božikov, Z., Janko, Z., On a question of N. Blackburn about finite 2-groups, Israel J. Math. 147(2005), 329-331.
[12] Z. Božikov, Finite 2-groups G with a nonabelian Frattini subgroup of order 16, Arch. Math. 86(2006), 11-15.
[13] Božikov, Z., Janko, Z., Finite 2-groups all of whose nonmetacyclic subgroups are generated by involutions, Arch. Math. 90(2008), 14-17.
[14] Božikov, Z., Janko, Z., A complete classification of finite p-groups all of whose noncyclic subgroups are normal, Glasnik Mat. 44(64) (2009), 177-185.
[15] Z. Božikov and Z. Janko, Finite 2-groups with exactly one maximal subgroup which is neither abelian nor minimal non-abelian, Glasnik Mat. 45(65) (2010), 63-84.
Croatian scientific bibliography