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Abstract

An overview of new and upcoming approaches (technologies, techniques, methodologies, 
tools, etc.) in various aspects and areas of water management is given in the paper. 
A brief account of the application and limitations of remote sensing techniques in 
monitoring meteorological and hydrological data, in efficient irrigation planning, and in 
improvement of water use in agriculture, is also provided. Several new water treatment 
technologies with a large-scale application potential are presented, and the use of 
numerical modelling in water treatment, ‘green’ infrastructure, and coastal engineering 
planning and design, is outlined. Such novel approaches are increasingly used in various 
water management activities, with an ultimate goal of achieving water management 
sustainability, which will surely contribute to the longevity of mankind.

Key words:  remote sensing, geospatial technology, advanced water treatment, numerical 
modelling, green infrastructure, coastal engineering

Najnovija dostignuca u održivom gospodarenju vodama

Sažetak

Ovaj rad daje pregled novih i nadolazećih pristupa (tehnologija, tehnika, metodologija, 
alata itd.) u različitim aspektima i područjima gospodarenja vodama. Prikazan je 
pregled primjene i ograničenja tehnika daljinskih opažanja u praćenju meteoroloških 
i hidroloških podataka, učinkovitom planiranju navodnjavanja i poboljšanju upotrebe 
vode u poljoprivredi. Predstavljeno je nekoliko novih tehnologija za pročišćavanje 
vode s potencijalom za primjenu u stvarnim uvjetima količina i kakvoća otpadnih voda, 
zajedno s korištenjem numeričkog modeliranja u pročišćavanju voda, implementaciji 
objekata “zelene“ odvodnje te planiranju i projektiranju u obalnom inženjerstvu. Ovakvi 
novi pristupi sve su češći u raznim aktivnostima gospodarenja vodama, a s konačnim 
ciljem postizanja održivog stanja gospodarenja vodama koje će zasigurno pridonijeti 
dugovječnosti čovječanstva.

Ključne riječi:  daljinsko opažanje, geoprostorna tehnologija, napredne metode pročišćavanja 
voda, numeričko modeliranje, zelena odvodnja, obalno inženjerstvo
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1. Introduction

Humans are increasingly becoming aware that the longevity of water usage can only 
be achieved by meeting our current needs for water without endangering capabilities 
of future generations to meet their own needs, for an unlimited period of time. 
This concept, known as sustainability, includes at least three interrelated components: 
environment, society, and economy. When dealing with a specific water management 
problem, it is possible that other inherent characteristics, for example technical or 
political components, will have to be involved as well [1], [2], [3]).
Water management sustainability is achieved through the effectiveness of each 
sustainability component. This effectiveness is achieved by maximizing the efficiency 
of positively perceived processes (aspects) and by minimizing negatively perceived 
processes within each component. For this, all processes (e.g. in basins, agriculture, 
wastewater drainage and treatment systems, etc.) must be known and analysed so 
that their efficiency can be evaluated.
Evaluating and improving efficiency of a process involves the use of a wide variety 
of approaches (technologies, techniques, methodologies, methods, procedures, tools, 
measuring equipment, software, etc.), a general goal being to meet all particular social 
needs and, at the same time, not to compromise the integrity of the ecosystem, or 
the integrity of the hydrological cycle. This is, of course, extremely difficult since all 
processes in the ecosystem are not entirely understood or known. Thus, it is not 
possible to grasp the overall human impact on the ecosystem and to be sure in the 
preservation of its integrity. But this ultimate and desirable goal can be identified as 
a sustainable state and, hence, the final stage of the sustainable development process.
During the process of sustainable development, all these above-mentioned approaches 
(techniques, methods, tools, etc.), go through stages of their own development and 
are being improved so as to increasingly contribute to the sustainability in the sphere 
of water management. Thus, this paper gives an overview of new and upcoming 
approaches used in the design and improvement of various water management 
areas, such as drinking water/wastewater treatment and drainage, agriculture, and 
coastal engineering. An overview of new remote sensing techniques for monitoring 
meteorological and hydrological variables and ground cover is also provided.

2. New and upcoming approaches and techniques in water manageent 

2.1. Trends in application of remote sensing in hydroscience and engineering

In recent decades, remote sensing has become a valuable data source for space-
time investigations of various geophysical phenomena on the land and sea alike. By 
covering large areas, remote investigations allow for point information from weather/
hydrological/marine gauges to be complemented and extended at different scales in 
both space and time. Remote investigation is based on sensing the earth’s surface 
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with various active or passive sensors of different types and frequencies of energy 
spectra. The area of remote sensing is still under significant development (sensors, 
data transmission, new parameters) and so the information from gauge stations is still 
necessary for the calibration/verification of remote sensing measurements, and for 
the validation and testing of new procedures and algorithms.

Remote sensing via aerial and space-borne platforms has been extensively used to 
supplement point information in the land and water resources analysis at different 
stages in watershed planning and management. Mapping of water boundaries, elevation 
model development, land cover identification and monitoring, snow and ice cover 
mapping, evapotranspiration and soil moisture mapping, precipitation measurement, 
water yield and soil erosion estimation, are some of the areas in which remote 
sensing techniques have been extensively utilised.

2.1.1. Water Body Mapping

Remote sensing information in hydroscience is directly used in the identification and 
mapping of the surface water bodies. A fine spatial resolution is required in order to 
achieve accurate mapping of water boundaries. Appropriate optical remote sensing 
techniques have extensively been used in this respect. Many satellite-borne missions 
(Landsat, MODIS, QuickBird, Ikonos, SPOT, RADARSAT, Sentinel, ASTER) provide a 
free access to raw images and products of global coverage since their initial missions 
in 1984.

Water surface can easily be differentiated from the land and vegetation as it adsorbs 
most of the energy in near-infrared (NIR) and mid-Infrared (MIR) wavelengths and 
gives darker tones in the bands [4]. Figure 1 shows Peruća Lake in different bands 
of the Sentinel-2A images for two different water level stages. Approximately 10m 
spatial resolution zones show the lake for the single band images (B1 = 443 nm, B5 
= 705 nm) and for composite images: true colour (B2, B3, B4), false colour (B3, B4, 
B8) and NDWI (Normalized Difference Water Index). The contrast between water 
and other pixels is poor in the VIS band (B1, Figure 1ba), but is much sharper in the 
IR region (B5, Figure 1bb). The water boundary can be distinguished with ease in the 
composite band images (false colour, Figure 1cb).

The NDWI is the most appropriate parameter for water body mapping [4]. It is 
obtained from NDWI = (B3-B8)/(B3+B8) by using the green and near infra-red bands. 
A comparison of NDWI zones (Figure 1bc and Figure 1cc) clearly shows water body 
changes at two different water stages of Peruća Lake.
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Figure 1.  Sentinel-2A images of Peruča Lake in different spectral bands for two 
different water level stages: layout (aa-base map 25k, ab-ortophotographic 
chart); images at normal water level 31 Aug 2018 (ba-band 1, bb-band 5, 
bc-NDWI); images at low water level 14 Nov 2018 (ca-true colour, cb- 
false colour, cc-NDWI)

Optical sensors can be used during daytime only, and they exhibit limited capabilities 
of penetration through clouds and thick vegetation. Their applicability is thus limited 
to fair weather conditions at daytime. These limitations can partly be overcome by 
active microwave sensors (such as Real Aperture Radar or Synthetic Aperture Radar 
(SAR)). Moreover, water surface provides a high reflection at microwave energy 
spectra, and SAR images have high potential for water body delineation in all-weather 
conditions. SAR images can be applied in historical investigations of water bodies but 
also in the real-time monitoring of extreme hydrological events and in the operational 
flood forecasting systems as feedback control information in numerical models.

2.1.2. Digital elevation models

Satellite and airborne remote investigations have been extensively used for developing 
the Digital Elevation Model (DEM) of river basins by using stereoscopic attribute 
of images. Besides development of elevation model, the information from DEM has 
been used in hydrological and hydraulic modelling for extraction of drainage paths, 
delineation of catchment boundary, aspect detection of catchments and channels, 
etc. There are several open-access Digital Surface Model (DSM) datasets of global 
coverage at a 30m horizontal resolution, such as SRTM, ASTER, or AW3D30.
The main limitation of DEM from stereoscopic photographs is its vertical accuracy, 
which may be increased to some extend in post-processing. The Light Detection And 
Ranging (LiDAR) survey may significantly improve horizontal resolution and vertical 
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accuracy of DEMs, providing horizontal and vertical resolution of DEM of less than 
1m and 0.2m, respectively, in river basins and floodplains [5].
A comparison of LiDAR and geodetic RTK-GPS surveys of the dyke crest along the 
Drava River near Varaždin (Croatia) is shown in Figure 2. Detailed geodetic RTK-
GPS and LiDAR surveys were made available in 2015/2016 for a 3550m long flood-
protection dyke on the Drava River. The LiDAR survey included sub-meter horizontal 
points (Figure 2b) from which a 1.0m resolution DEM was developed (Figure 2c). 
The elevation profiles of two surveys along the dyke crest are shown (in [m a.s.l]) 
together with deviations of LiDAR to RTK-GPS survey (Figure 2d). The statistics of 
deviations of DEM from LiDAR to RTK-GPS survey, for 77 points along a 3550m 
long embankment crest, shows the low mean error (ME) of LiDAR survey of -0.08m 
and the low standard deviation of 0.04m. High vertical precision of LiDAR survey 
and subsequent DEM can lead to significant improvements of hydrological/hydraulic 
models and in the mapping of flood-prone areas [6], as compared to traditional 
survey techniques and DEM derived from stereoscopic satellite images.

2.1.3. Evaluation of actual evapotranspiration

Actual evapotranspiration (ET) is the most complicated water flux component that 
can be estimated in a river basin. Actual ET can be indirectly estimated from the 
formulation of energy balance of earth surface by using visible and thermal bands 
of sensors. The instantaneous latent heat flux of ET is calculated as a residual of the 
energy balance, which is then converted into daily ET by various methods: SEBAL, 
METRIC, TSEB, S-SEBI, SEBS etc. The remote sensing based ET can be estimated at a 
high spatial resolution (up to 30 m) but it this sensing is limited to clear sky conditions 
and days of satellite overpass. Several approaches have been proposed to improve 
temporal resolution: a combination of satellite images from two different platforms, 
an integration of satellite images into hydrological modelling, and a combination of 
evaporative fraction and point daily PET.

Figure 2.  Surveys of flood-protection dyke on the Drava River near Varaždin, (a) 
layout with dyke chainages, (b) ortophotographic chart with LiDAR 
survey points, (c) DEM from LiDAR survey, (d) dyke crest elevation 
profiles from LiDAR and RTK-GPS surveys with elevation difference of 
LiDAR to RTK-GPS survey
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The evaluation of ET via remote sensing depends on the availability and quality of 
images. The analysis of satellite images from Landsat 7 ETM+ (Enhanced Thematic 
Mapper Plus) mission for the Krapina River basin in Croatia revealed that only 26 
images were usable in the 1999-2003 period [7]. In this period, direct measurements 
of ET were available at two lysimeter stations around the Krapina River basin: Zagreb-
Maksimir agro-ecological station (available in 1990-1999) and Varkom-Varaždin 
infiltrometer station (available in 1988-2002) (see Figure 3a).
The SEBAL approach was implemented for estimating the actual ET in the Krapina 
River basin in the period from April 1999 to June 2003. The advantages of SEBAL 
approach include an automatic internal calibration within each analysed image 
(assumptions on the energy balance state are made at the hottest and the coolest 
pixel in the image) and minimum auxiliary ground-based data [8]. The results of 
SEBAL ET estimates (ETSEB) were compared to the daily ET measurements (ETLYS) 
at Varkom-Varaždin and Zagreb-Maksimir lysimeters (see Figure 3b). Differences 
between SEBAL ET estimates and ET measurements at gauging stations are within 
the 0.0–1.0 mm range and have the average MAE = 0.3 mm (mean absolute error), 
σ = 0.44 mm (st.dev) and NSE = 0.64. This confirms high reliability of the SEBAL 
method for the evaluation of daily ET estimates.

2.2. Geospatial technology in agriculture

Water is the most essential component of agricultural systems, and the latter are 
the largest consumers of water resources worldwide. Freshwater abstraction for 
agriculture accounts to up to 70% on an average globally, while this figure is 33% 

Figure 3.  Distribution of SEBAL ET estimates (mm day-1) for 6 June 2000 in the 
Krapina River basin (a) and comparison of SEBAL ET estimates (ETSEB) 
to measured daily ET values at Varkom-Varaždin and Zagreb-Maksimir 
lysimeters (ETLYS) for 22 events in the 1999-2003 period (b), from [7]
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for Europe, 80% for southern Europe and up to 90% for developing countries [9], 
[10], [11]. Population growth has led to intensification of agricultural activities 
worldwide, with a sixfold increase in irrigated areas [12]. Conventional projection 
of exploitation of water resources by 2050 predicts an increase of 53% in order to 
keep up with the food demand [13], while additional 15% of fresh water would be 
allocated from agriculture to households and industry [14]. An increase in freshwater 
consumption can lead to greater vulnerability of agriculture through soil salinization 
and deterioration of related ecosystems [15]. 
Agricultural irrigation contributes to water stress because its efficiency is relatively 
low, with only 55% to 65% of the water delivered to crop being actually used by it. 
In order to satisfy growing demands for greater crop production, irrigation needs 
to be sustainable as highlighted in the Water Framework Directive. Over-irrigation 
does not generally cause reduction in crop yield, and is therefore more often than 
not excessively applied to crops. In turn, over-irrigation can cause reduction in water 
supply to competing users, water-logging conditions for the crop and nutrient loss 
[14]. More than one-third of the irrigated land is affected by land salinization or rising 
groundwater level problems as a result of over-irrigation and poor drainage [16], and 
it is a key issue that needs to be addressed in sustainable farm production [17].
Sustainable irrigation, i.e. a higher crop production using less water resources, can 
be achieved from the engineering perspective by scheduling water application for 
irrigation and developing methods associated with it in order to keep it commercially 
competitive [12]. Irrigation frequency depends on many parameters like soil moisture, 
weather conditions, water allocation, crop growth stage, and its sensitivity to water 
stress. A major research goal is to develop techniques and methods for maximising 
crop yield with minimum water consumption, while at the same time minimizing 
water losses primarily through evaporation and percolation [14]. The achievement 
of this goal is dependent on understanding how much water is used by the crops in 
specific conditions arising from soil characteristics, soil fertility, soil moisture, canopy 
volume, water content, and biotic and abiotic stress [18].
Important data for efficient irrigation scheduling, or precision irrigation, can be 
acquired by discrete or continuous monitoring of relevant parameters. Remote 
sensing via satellite, and airborne and unmanned aerial vehicles, equipped with 
related sensors, can be used for this purpose [18], [19]. Spectral signatures of all 
surfaces and objects in the monitored area can be collected with remote sensing, 
resulting in image data with specific spatial resolution [20]. Various sensors can be 
utilized to capture remotely sensed vegetation indices for precision irrigation and 
estimation of crop water status, evapotranspiration, infrared thermography, and soil 
and crop characteristics [17]. Remote sensing applications can be more effective if 
they combine data from multiple sensors to complement each other for an improved 
extraction of information in irrigated settings [21]. 
In order to improve the efficiency of water use in agricultural management, it is 
first necessary to calculate water requirement for irrigation needs form estimated 
crop water requirements and soil water balance, where crop evapotranspiration 
is the main component. Multispectral imagery of canopy reflectance and reference 
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evapotranspiration can be directly converted into maps of potential crop water 
use [22], [23]. Hadjimitsis et al. [19] have presented methodology for monitoring 
agricultural areas and estimating irrigation demand using satellite remote sensing, 
irrigation models, and spectroradiometric measurements. They used satellite 
images to define the vegetation index, surface albedo and temperature in the 
monitored area. Spectral signature of crops was measured with sun-photometers 
and spectroradiometers. Crop water parameters, i.e. spatial variations of actual 
evapotranspiration, were estimated with the remote sensing algorithm Surface 
Energy Balance Algorithm for Land and Surface Energy Balance System. The results 
demonstrated potential of the remote sensing method and water balance models 
to determine spatial variations of actual evapotranspiration for an agricultural area, 
using data from any available satellite source at different scales, but complemented 
with routine meteorological measurement of air temperature, humidity, wind speed 
and sunshine duration. Tazekrit et al. [23] showed that the demand of pumped 
irrigation water can be estimated from satellite images using the SAtellite Monitoring 
of Irrigation Model (SAMIR). Calculated volumes compared with measured data of 
pumped irrigation water for single year period show the difference of less than 10%.
One of useful tools for agricultural decision support system is the dynamic remote 
sensing of land affected by salinity and water-logging. Dehni and Lounis [24] have 
successfully mapped surface indices of salinity and sodicity in IDRISI GIS software 
using multi-spectral optical data from the LANDSAT Enhanced Thematic Mapper. The 
area affected by water-logging due to seepage and salinity due to salts on the surface 
was visually interpreted as visible white salt encrustation, while the Wetness Index 
was used to enhance the spectra of wet soil. The developed method has proven to 
be an efficient analytical tool in pattern recognition of highly saline areas using the 
geo-statistical modelling over soil electrical conductivity data. 
Corbari et al. [25] investigated advances in coupling satellite driven soil water balance 
model and meteorological forecast as support for precision irrigation. They showed 
that it is possible to get reliable soil moisture forecasts for up to three days, which can 
be used in the irrigation scheduling process. This data can reliably be used only if the 
water stress threshold that regulates the irrigation timing can reliably be determined. 
The use of climatic models for meteorological forecast enables compensation 
for future climate change scenarios, where supervised learning can be applied for 
solving problems related to water availability [26]. Water stress can reduce and 
remove specific spectral properties of the crop through e.g. lowering of the red light 
absorbance [27]. Masseroni et al. investigated the reliability of thermal and optical 
indices derived from imaging techniques for detecting the crop water status. Their 
findings confirmed the previous findings that thermal data (primarily the CropWater 
Stress Index) are a reliable indicator of the crop water status, as well as the optical 
Photochemical Reflectance Index, while the Normalized Difference Vegetation Index 
may be a valuable index for the assessment of severe water stress conditions. They 
concluded that the two indices can be considered as valid alternative to conventional 
methods to support the irrigation management useful for open field applications, in 
particular for the improvement of irrigation scheduling. 
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Liu et al. [28] evaluated the capability of different datasets for soil drainage mapping in 
agricultural fields. The evaluated datasets include apparent soil electrical conductivity, 
remotely sensed high-resolution airborne hyperspectral reflectance, and C-band 
synthetic aperture radar backscattering coefficients, coupled with the high precision 
digital elevation model. The study showed that the in-field soil drainage could be 
effectively mapped using the high-resolution optical and C-Band radar remote sensing 
data, and the apparent soil electrical conductivity data acquired under bare soil 
conditions. This potentially provides an alternative to the more traditional soil field 
survey, which usually requires more resources, especially to meet the requirements 
of precision agriculture. On the other hand, the proposed canonical analysis provides 
an opportunity to map soil drainage on a continuous basis, revealing the continuous 
variation of many soil conditions [28]. Al-Saady et al. [29] also showed that the use of 
remotely sensed data (ASTER GDEM) and GIS techniques (ArcSWAT and other GIS 
tools) is more appropriate, precise, and economic for extracting drainage network 
and morphometric parameters of river basins, compared to traditional methods. GIS 
techniques are excellent tools for hydrologic analyses of drainage networks and for 
the high-accuracy drainage basin mapping [29], [30].

2.3. Advanced water and wastewater treatment technologies

The disinfection with chlorine or chlorine based compounds is the most common 
treatment for the disinfection of drinking water. However, chlorinated hydrocarbons 
(such as trihalomethanes, chloroform, dichloromethane) and nitrosamines, which 
may be highly cancerous, are produced as by-products in the reaction of chlorine 
and organic compounds. The accumulation of these by-products, along with the 
accumulation of heavy metals in human body, increases the risk of cancer and cancer 
related diseases [31], [32], [33].

According to present research, some treatment technologies, such as the advanced 
oxidation methods and electrochemical methods, show the possibility for efficient 
removal of different contaminates in the water purification process. 
Advanced oxidation processes (AOP) are procedures of water treatment in which 
the molecules of water, under the influence of chemical, electrical, mechanical or 
radiation energy, are disrupted to hydrogen ions and highly reactive free radicals 
(such as hydroxyl radicals (·OH)) which, due to their electron-induced instability 
(one or more unpaired electrons), react with other substances in water. Among 
various radicals (superoxide radical, hydroperoxyl radical, alkoxyl radical, perhydroxyl 
radical), the hydroxyl radical (·OH) is the most important for water/wastewater 
treatment due to its high standard potential (the affinity to gain or lose electrons in a 
chemical reaction). Hydroxyl radical is short living, nonselective and can oxidize and 
decompose numerous hazardous compounds to CO2 and inorganic ions [34].
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There are several different mechanisms for the formation of this radical. They are 
usually divided into three main categories:
• chemical-based processes that use oxidizing chemicals and reactive radicals: 

ozonolysis (O3) and Fenton’s oxidation (hydrogen peroxide (H2O2) and ferrous 
iron as catalysts).

• wave energy-based processes: photolysis (ultraviolet (UV) as catalyst), 
photocatalysis (UV and titanium dioxide (TiO2) as catalyst), UV/H2O2 processes, 
sonolysis (ultrasound (US) as catalyst), and microwave processes. 

• combined advanced oxidation processes: sonophotolysis (UV/US), 
sonophotocatalysis (UV/US/TiO2), UV/ozone processes, UV/Fenton processes, 
and US/Fenton processes.

Photocatalytic processes with TiO2 are most widely studied due to its high removal 
efficiencies, potential to absorb solar energy and as it is stable and non-toxic. The 
current research area of photocatalysis includes the optimization of processes for 
higher efficiency, the research of visible-light sensitive process and the combination 
of other AOPs. However, the large-scale applications and continuous photocatalytic 
processes are still missing [35]. 

2.3.1. Ultrasonic water treatment

Recently, research is also focused on ultrasound technology, which is based on 
mechanical wave energy for water/wastewater treatment. High-intensity ultrasound, 
due to the acoustic cavitation phenomena, induces various sonochemical/
sonophysical effects without the use of chemicals. This gives a potential for novel and 
environmentally friendly water treatment processes.
Ultrasound occurs when the frequency of a sound wave is greater than 18-20 kHz. 
When ultrasound is present in aqueous phase, a sound energy field is created due to 
sound pressure, causing water molecules to vibrate at their mean position. The sound 
pressure changes sinusoidally resulting in periodic repetition of the compression 
phase (the pressure is positive) and the rarefaction phase (the pressure is negative).
Water molecules are drawn apart in the low pressure phase, in which water evaporates 
and cavitation bubbles are formed, while at high pressure these cavitation bubbles 
violently collapse, Figure 4. Bubbles are usually formed at the surface of suspended 
solids in water or on the reactor walls during the rarefaction phase. During the 
periodical change of pressure, bubbles pulsate with the diameter increasing at the 
rarefaction phase and decreasing when the pressure increases. Bubbles increase in size 
since the dissolved gas and vaporized water enter the bubbles during the rarefaction 
phase and then liquefy during the compression phase. When a bubble reaches a critical 
size or collides with another bubble, it collapses when the pressure increases. In such 
conditions, compression occurs adiabatically and the gas and vapour are compressed at 
a very high temperature (around 4000 °C and 500 bars) causing the inside of the bubble 
to transform into a plasma state [36]. Bubble formation, growth and implosion with the 
action of ultrasound in the liquid is called acoustic cavitation.
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Figure 4. Formation, growth and implosion of a cavitation bubble [37]

These extreme conditions result in chemical reactivity and the formation of hydroxyl, 
hydrogen, and oxygen radicals. These radicals react in different ways in the final phase 
of the collapse (hot spot chemistry), cause fast oxidation of organic and inorganic 
matter and the degradation of complex compounds in water [38]. Main reactions 
involve combinations of radicals and reactions with vaporized molecules:

H2O  ·OH + H  (1)

O2  2O  (2)

H + H  H2  (3)

H + ·OH  H2O  (4)

O + H2O  2·OH  (5)

H + O2  ·OH + O  (6)

OH + ·OH  O + H2O  (7)

Inside the cavitation bubble water molecules are pyrolysed forming ·OH and ·H 
radicals according to the reactions (1) to (7). There are mainly three regions for 
chemical reactions: (a) a hot gaseous nucleus in which temperature and pressure 
are extremely high, (b) an interfacial region with radical gradient in temperature and 
local radical density, and (c) a bulk solution at ambient temperature [34]. Therefore, 
chemical effects of ultrasound do not occur in direct interaction with molecular 
species, but ultrasound chemistry (sonochemistry) primarily derives from acoustic 
cavitation that serves as an effective means for concentrating diffuse energy of the 
sound [39].
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An ultrasonic transducer, Figure 5, is used to generate ultrasound. It converts the 
electrical signal into mechanical displacements of a certain crystalline material 
according to the inverse piezoelectric effect. The frequency of the signal corresponds 
to the frequency of the displacement and ultrasound occurs when a value of around 
18-20 kHz is reached.

The ultrasonic removal of contaminant from water has three basic, practically 
simultaneous, mechanisms. Chemical mechanism is based on chemical reactions 
between the generated free OH radicals and the contaminants present in water. 
Thermodynamic mechanism which, by implosion of gas (air) bubbles developed in the 
low pressure phase, results in a very high pressure (a few hundred bar) and temperature 
(a few thousand °C), thus creating conditions that cause cellular decomposition of 
microorganisms. Free radicals are generated in the same process. The third mechanism 
involves hydromechanical action (it manifests as a sudden multidirectional local 
movement of water), which results in a strong local sheer stress and breaking of the 
bond between the molecules, which is also caused by implosion of air bubbles [40].
One of the most important factors regarding ultrasound contamination removal 
efficiency is the frequency. An optimum frequency depends on the contamination and 
system geometry. High frequency will usually reduce cavitational effect because the 
negative pressure produced by the rarefaction cycle is insufficient in duration and/or 
intensity to initiate cavitation, and the compression cycle occurs faster than the time 
it takes for bubbles to collapse. At lower frequency, more violent cavitations will be 
produced, resulting in higher localized temperatures and pressure [41].

Figure 5. Basic elements of the ultrasonic device [34]
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2.3.2. Electrocoagulation

Electrochemical processes, such as electrochemical oxidation, electrochemical 
reduction, electrocoagulation (EC), electrocoagulation/flotation and electrodialysis, 
are usually used to remove pollution (or retrieve material) from highly contaminated 
wastewater by use of electricity and sacrificing electrodes. Electrocoagulation is usually 
used for water and wastewater treatment. It includes coagulation and precipitation 
of pollutants by the “in situ” coagulant production. Direct current is usually applied, 
while the use of electrodes and their characteristics (material and setup) depend on 
the wastewater pollution and the required quality of effluent. Several electrodes of 
the same material are usually used to form an electrode cell.
In the EC reactor, the water/wastewater flows between electrodes while the direct 
current is applied to them. The choice of the electrode material and their arrangement 
depends on the type of contaminants and the required quality of treated water. 
Aluminium (Al) is usually used for the drinking water treatment and iron (Fe) for 
the wastewater treatment. Aluminium and iron are relatively cheap and, compared to 
other metals, such as titan and silver, easily available, non-toxic, and proven effective 
[42], [43], [44], [45], [46].

Figure 6. Electrochemical process in water treatment [6]

When the current is applied, metal hydroxides are produced in the reaction between 
either Al3+ or Fe2+ ions, created in electrolytic oxidation of Al or Fe electrodes, and 
OH- ions from a reduction reaction taking place on the cathode where hydrogen gas 
is also released according to [47]:

Fe(s)  (Fe)2+ (aq) + 2e- (8)

Al(s)  (Al)3+ (aq) + 3e- (9)
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2H+ + 2e-  H2(g) (in acid medium) (10)

2H2O + 2e-  H2(g) + 2OH- (in neutral or alkaline medium)  (11)

Metal hydroxides, used in the precipitation process, are produced according to the 
equations below [48]:

4Fe2+(aq) + 10H2O + O2(aq)  4Fe(OH)3(s) + 8H+ (12)

Fe2+(aq) + 2OH-  Fe(OH)2(s) (13)

Al3+(aq) + nH2O  Al(OH)n
3-n + nH+ (14)

Depending on the pH of wastewater and the oxidation potential, Fe can form divalent 
or trivalent cations, but Al is only formed as a trivalent cation. These hydroxides 
trap colloidal particles and create flocs which can be easily removed from water 
by sedimentation or flotation [49]. The evolution of hydrogen bubbles leads to an 
increase in pH and it also helps flocculated particles to float out of the water [50].
There are various parameters affecting the efficiency of EC process for water/
wastewater treatment. Some of them are related to the operating conditions (current 
density, treatment time), others to wastewater characteristics (pH, conductivity), or 
to the geometry of EC reactor and electrodes setup (electrode size, polarization, 
electrode spacing) [46]. These effects are usually case-specific and often differ between 
researches on small-scale and full-scale units (reactors). However, understanding the 
effects that process parameters have on the pollution removal efficiency will help in 
developing guidelines for the EC reactors design, and could lead to wider utilization 
of EC process.
Some of the advantages of the EC process are: effluent contains less total dissolved 
solids compared to other chemical processes; easy maintenance of the device; more 
efficient and faster degradation of organic matter compared to chemical coagulation; 
larger and more stable flocs are formed than those produced by chemical coagulation; 
it is not necessary to control the pH of the water, except in extreme cases; no 
chemicals are required; generated sludge has better quality and smaller volume 
(50 - 70 %) compared to chemical coagulation; several different types of pollutants 
can simultaneously be removed; side reactions, such as generation of hydrogen or 
hypochlorite, can be useful for the disinfection; it can be used as a decentralized 
system [45], [46], [51], [52].
However, some of EC disadvantages are: electricity costs may be significant; possible 
passivation of anode due to oxygen presence and deposition on the cathodes; the 
electrodes need to be regularly replaced; high conductivity of wastewater is required; 
depending on the electrode material, high ion concentrations need to be removed 
from water; in some cases, gelatinous hydroxides may be dissolved in water; it is not 
effective for the removal of soluble substances such as ammonia, sugar, organic acids, 
solvents, phenols, alcohol and similar [45], [46], [51], [52].
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2.4. Numerical modelling

The use of advanced computer technologies and tools, as well as the multi-criteria 
analysis and systems theory, are considered particularly useful in the sustainability 
analysis of different water systems [53]. Thus, the functionality of, for example, water 
treatment processes can be improved through numerical modelling.
Water quality models simulate changes in contaminant concentration during its 
transport through the environment or reactor. Most reactions in purification 
processes occur in the form of multiphase processes. Typical examples are mixing of 
gaseous phase and water for the purpose of transmitting undesired contaminants or 
forming a solid phase that sink together with adsorbed contamination. There are a 
large number of reactors in which multi-stage processes with different transformation 
rates are taking place.
The continual modelling of different operational scenarios leads to an improved 
technology process, including the variability of the process itself over time. Therefore, 
phenomenological numerical models are based on the numerical integration of partial 
differential equations describing the process and its dynamics.
Basically, all purification processes contain the following mechanisms: water flow with 
pollution content, forcing of equilibrium states between water and gas or solid phase, 
transformation of the pollutant component into a gaseous or solid phase, degradation 
or die-off in water or solid phase and mass balance between liquid, gaseous and solid 
phases (continuity law).
Treatment of functionalities of the technological process can be monitored within 
a modelling environment such as Modelica (www.openmodelica.org) or Matlab / 
Simulink. Their implementation and simulation enables creation of a virtual water 
treatment plant that can be used not only by technologists, operating personnel and 
managers, but also for educational purposes, Figure 7.

Figure 7.  ASM3 example plant configuration in Modelica environment (municipal 
wastewater treatment plant with a size of 145 000 PE, [54])
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Being part of the models developed in Matlab / Simulink and Modelica environment, 
partial differential equations are numerically integrated, and thus an insight can be 
gained into the time course of process development. Model libraries can be connected 
to each other, forming a complete technology line in purification process. In this way, 
it is easy to evaluate the effect of a particular process change on the overall effect of 
the applied technology scheme. Models are free to use, their structure and program 
routines are open and flexible, and they enable visualization of results [55].
Models for “real-time” optimization of technological processes take into account 
the perturbation of water flow and water quality. Thus the model has to have the 
following elements: robustness without changes in the original code, simple calibration 
based on “on-line” data from full-scale purification plant, corresponding graphical 
interpretation for comparing the measured and calculated values, the possibility of 
comparing different operating scenarios, evaluation of possible interaction between 
different parts of technological process, optimization criteria for the performance of 
an entire plant, a circuit that allows interaction with the control devices installed in 
the system.
Apart from stand-alone programs in different programming languages and well-
developed programs for partial water treatment processes, there are also several 
software packages for simulation of complete water purification plants. The application 
of these programs enables users to diagnose the relationship between raw input 
water and process conditions, along with their optimization.
Otter (developed by WRc, UK). Modelling package designed to dynamically 
simulate performance of water treatment works [56]. The model can be used 
to simulate a particular purification process or complete installation in a water 
conditioning plant. The model describes the formation and elimination of a 
wide range of pollution parameters, from turbidity and colour to pesticides and 
microbiological indicators.
Metrex is being developed at the University of Duisburg/Germany [57]. In this 
model, simulations are carried out on the basis of analytical and numerical models 
of process steps usual in surface water treatment (microstraining, ozonation, floc 
formation, sedimentation, rapid filtration, granular activated carbon filtration, 
biodegradation, disinfection). The emphasis is on the removal of particle matter and 
ozonation (oxidation of dissolved organic carbon, iron and manganese, formation 
of bromate). Simulations are conducted in two levels. The first is an analysis of the 
entire process of purification in operational mode. In the second level, it is possible 
to change the concept and design an individual segment within the overall treatment 
process. This software package is based on the object-oriented model approach, using 
Java technology, the Internet and Matlab / Simulink.
The Water Treatment Plant (WTP) model was originally developed by the 
Environmental Protection Agency, in support of the Disinfectant/Disinfection 
By-products (D/DBP) Rule [58]. The model is based on empirical relationships 
recognized by regression analysis, and is focused on eliminating NOM, forming DBP 
and disinfection. The WTP model also enables the inclusion of laboratory analyses 
results and comparison with model simulation results (predictions).



Future Trends in Civil Engineering

162

TAPWAT (Tool for the Analysis of the Production of drinking WATer) is elaborated 
by the Netherlands Institute of Public Health and the Environment (RIVM). The 
model is developed as a twofold model, through empirical and process modules. The 
modules are incorporated into one model structure and are commonly used for 
one particular application. The model respects the RIVM standard for information 
infrastructure and modelling [59]. The main purpose of this model is to determine the 
likelihood of pathogenic microorganisms and DBPs coming out of the technological 
process.
On the other hand, fundamental research is usually focused on only one separate 
process. Generally, the aforementioned operating models are not adequate for 
describing all physico-biological-chemical phenomena that occur in complex 
interaction processes within each individual segment in the technological process of 
water conditioning.
The development of computers and software allows for more detailed modelling of 
process flows and substance detection through reactor circuits, also including the 
influence of hydraulics on physical, chemical and microbiological processes taking 
place in reactors. The application of the Computational Fuid Dynamics (CFD) has 
increased significantly nowadays, taking the leading role in research and optimization 
of hydraulic processes in a wide range of engineering applications. The use of CFD 
models (openFOAM, Ansys, COMSOL) enables prediction of flow fields and turbulent 
mixing to the various levels of detail.
A large number of studies have shown that CFD is a powerful tool for analysing 
and optimising particular water treatment processes, such as optimization of ozone 
contactors for microbial inactivation [60], [61], disinfection performance of UV reactors 
[62], oxidation processes [63], investigation of electrochemical variables in the operation 
of a continuous upflow electrocoagulation process in treating textile wastewater [64], 
simulation of the grit and sand separation effectiveness of a typical hydrodynamic 
vortex separator (HDVS) system [65], simulation of mixing characteristics of a small 
circular anaerobic digester tank [66], working performance of closed-loop bioreactor 
[67][66], verification of compliance of a water reclamation plant disinfection stage 
with respect to modal time [68], or analysing efficiency of the electrocoagulation (EC) 
process with stainless-steel electrodes for total nitrogen removal [69].
The most challenging part is a reliable simulation of the flow field. Complex 
turbulent flow requires a detailed numerical modelling to detect all spatial and 
temporal turbulence scales, resulting in long and expensive calculations. Such DNS 
(direct numerical simulation) calculations are currently still unavailable for practical 
purposes. Simpler and satisfying accurate simulations rely on the so-called large-
eddy simulation (LES) technique [70]. The use of LES still needs to be deployed with 
stronger computer resources, so the k-e turbulence model (RANS) is commonly 
used in engineering practice. The RANS (Reynolds averaged Navier-Stokes equations) 
models with the k-e turbulence model use an averaged flow field and adopt an “eddy 
viscosity” concept for describing fluctuating turbulent motion. The consequence of 
this simplification in RANS models is the reduced accuracy of simulation results in 
the vicinity of complex geometries.
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Experiments reliably determine characteristics of the flow field and biochemical 
parameters, while the CFD models give their predictions. Experiments are most 
often performed in laboratories and the results obtained are more reliable than the 
results of numerical simulations. Although relevant physical, biological and chemical 
processes are incorporated in the experiment itself, due to practical limitations, 
measurements are carried out with limited spatial and temporal resolution. Using the 
CFD model, it is possible to get insight into the characteristics of the process with 
the desired degree of resolution in the spatial and temporal domains. In addition, 
geometric modifications can be carried out relatively fast on numerical models, which 
is highly desirable, considering the usual needs for process optimization. Experiments 
are commonly expensive and time-consuming, while simulations with CFD models 
are relatively inexpensive, although they may last for a long time. However, despite 
the above mentioned benefits of the CFD model, it should be noted that numerical 
models adopt a whole set of assumptions and simplifications in turbulence field 
description and biochemical reactions. Therefore, experimental measurements are 
still necessary for better understanding of complex interaction in physical, biological 
and chemical processes, as well as for parameterization and validation of CFD models. 
Consequently, a combination of experimental and CFD tehniques is recommended 
for a more reliable recognition of complexity of technological processes. After the 
CFD model is validated for a specific technical installation, it can be used for energy 
consumption optimisation or for determining the required amount of chemicals.

2.5. Implementation of green Infrastructure in urban drainage systems 

Increased temperatures and changes in global water cycles lead to temporal 
intensification of extreme rainfall events and changes in their spatial distribution, 
resulting in the flood risk increase from 10% to 170% [71], [72]. In the EU alone. 32% 
of all economic losses related to natural hazards is related to hydrological events 
such as floods and mass movements and approximately 20% of all cities in Europe 
are exposed to flood risk [73], [74], [75]. The combined effect of climate change and 
urban population growth are main reasons of increased flood risk in urban areas 
around the world. According to latest UN projections, urban population will increase 
from current 55% to 68% in 2050 [74]. Urban floods can be divided, depending on 
the main drivers, into fluvial floods (from rivers), coastal floods (from extreme tidal 
conditions), and pluvial floods (surface water floods from heavy rains). Large urban 
areas and megacities exposed to combined impact of fluvial and tidal floods or fluvial 
and pluvial floods are especially vulnerable to flood risk, e.g. megacities in SE Asia 
[76], [77], [78].
Existing urban stormwater drainage systems are based on grey infrastructure 
elements that are designed to capture and pass excess water through the system 
of closed conduits (pipelines). Excess water is defined as a design storm for a given 
return probability, mostly of larger magnitude. These grey infrastructure elements are 
designed using mathematical hydrological-hydraulic models that offer a good level of 
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predictability of the system behaviour, but the design is also based on the assumptions 
of invariability of once developed design storms and cannot capture changes in rainfall 
frequency and pattern due to the induced future climate changes. Urban drainage 
systems based on grey infrastructure additionally increase percentage of impermeable 
areas, which leads to excess water volume and increase in flood risk, but they are 
still irreplaceable for mitigating urban flooding from large-magnitude rainfall events. 
Negative effects on urban areas can also be caused by more frequent rainfall events 
of smaller magnitude, and modelling of different combinations of rainfall intensity and 
duration should therefore be examined.

In order to face these challenges new, more effective, robust, and flexible solutions 
are used, such as those involving implementation of elements of Green Infrastructure 
(GI) into conventional urban drainage systems [79], [80]. Different terminology can be 
found in literature for these solutions depending on the part of the world, specificity, 
and their primary focus such as: SUDS Sustainable Urban Drainage Systems (SUDS), 
Runoff Best Management Practices (BMP), Low-Impact Development (LID), Water-
Sensitive Urban Design (WSUD), and Integrated Urban Water Management (IUWM) 
[79]. A schematic representation of these solution is given in Figure 7. It can be seen 
that the term Green Infrastructure covers a broad area, from specific techniques to 
broad principles, such as sustainable development. Incorporating SUDS techniques 
i.e. GI elements such as: green roofs, wetlands, infiltration trenches, bioretentions, 

Figure 8.  Evolution and application of terminology surrounding urban drainage 
adjusted from [79]
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impervious pavements, rain gardens, etc., contributes to flood risk mitigation, and 
to microclimate and temperature control, but also improves water quality and 
biodiversity and amenities in urban areas. GI and SUDS contain both structural 
and non-structural measures [81]. Numerous studies have confirmed benefits of 
implementation of the GI measures and techniques into urban drainage systems in 
newly developed areas and in existing urban areas. If these measures are appropriately 
applied, they can complement traditional urban drainage structures by reducing peak 
runoff, flood volume, and pollution load [82], [83], [84]. Guidelines for the design, 
construction and operation of urban drainage systems with GI elements are available 
in [85] and [81]. Average performance levels for various groups of elements can be 
found in Table 1.

Table 1.  Performance level (H-high; M- medium; L-low) for various groups of SUDS 
techniques, i.e. GI elements, for improving water quality (WQ), hydraulic 
performance (HP) (based on runoff volume reduction (RVR) and flow rate 
control (FC)), maintenance and cost levels (M-C), and habitat creation 
potential (HCP). Adjusted from [81]

European Union encourages extension from the urban risk reduction approach 
towards the climate change adaption approach, with the final goal in the form of 
resilient and sustainable cities [86]. This is done through available legal framework 
including Water Framework Directive, Flood Directive, Climate Change Adjustment 
Strategy, Green Infrastructure Strategy, and the EU’s Natural Disaster Strategy. The 
concept of sustainable water management in urban environments is explained and 
presented in literature from multiple aspects: engineering, economy, spatial planning, 
ecology [87], [88].

Element 
groups

Examples of SUDS techniques, i.e. 
GI elements WQ

HP
M-C HCP

RVR FC

Source control
Green roof, Rainwater harvesting, 
Pervious pavements

L-H M-H L-H H L-H

Open channels
Conveyance swale, Enhanced dry and 
wet swales, Filter trench, Sand filters

M-H M H L-M M-H

Filtration
Surface sand filter, Bioretention/filter 
strips

H L L-H M-H L-M

Infiltration
Infiltration trench, Infiltration basin, 
Soakaway

H H H L-M L-M

Detention Detention basin L-M L H L M

Retention Retention pond, Subsurface storage L-M L H M H

Wetland
Shallow wetland, Extended detention 
wetland, Pond/wetland, Wetland channel

M-H L L-H H H
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2.5.1. Models and tools

Models and tools for stormwater quality and quantity simulation, but also for their 
ability to incorporate GI elements in urban drainage systems, have been reviewed by 
various authors [89], [90], [91], [92]. In most studies, the Storm Water Management 
Model (SWMM) developed by the United States Environmental Protection Agency 
(EPA) has been identified as the most sophisticated modelling tool from the aspect 
of accuracy, applied algorithms, and possibility for application in a wide range of 
spatial scales, from specific sites to catchment areas. In fact, the SWMM is the most 
popular freely available open source model for simulation of drainage systems with 
GI practices such as: permeable pavements, rain gardens, green roofs, street planters, 
rain barrels, infiltration trenches, and vegetated swales [92], [93]. 
However, the GI based solutions have certain disadvantages when compared to grey 
solutions. Perhaps the most notable one is the need for a larger surface area in 
urban environments where land is scarce and expensive. Therefore, it is important 
to have modelling tools for economic evaluation of conventional vs GI solutions for 
urban stormwater management. Jayasoorija [92] has provided a detailed review of 
available ready-on modelling tools that can be used as simple design and/or decision 
making screening tools. This author specifies five tools that can address both the 
economic aspect and the stormwater quality and quantity aspect: (i) Centre for 
Neighbourhood Technology (CNT), Green Values National Stormwater Management 
Calculator; (ii) EPA System for Urban Stormwater Treatment and Analysis Integration 
Model (SUSTAIN); (iii) Model for Urban Stormwater Improvement Conceptualization 
(MUSIC); (iv) Low-Impact Development Rapid Assessment (LIDRA) and (v) Source 
Loading and Management Model for Windows (WinSLAMM).
Multitude of stakeholders with competing interests are involved in the design and 
management of urban drainage systems, which is why models need to be supported 
with decision-aid tools. The classification of decision-aid tools commonly used in 
sustainable drainage assessment for economic, social, environmental and health 
aspects of GI is presented by Zhou in [91]. The multi–criteria decision analysis 
(MCDA) approach is used for successful evaluation of trade-offs between different 
goals such as investment costs, and stormwater runoff quality and quantity. MCDA 
tools are used as an extension to existing models (e.g. SWMM- Software Toolkit for 
Research Involving Computational Heuristics (OSTRICH)) or as an integrated part 
of existing models (e.g. SUSTAIN) [93], [94], [95], [96].
Most evaluations of urban drainage systems overestimate economic and environmental 
benefits of GI techniques and underestimate other benefits, social ones for instance. 
Namely, GI provides, not only benefits connected with improvement of the urban 
water quality and quantity, but also other benefits that can be presented in the form 
of ecosystem services (ESS), such as improvement of air quality, reducing urban heat 
islands, improving resilience to climate change, pest and disease control, improving 
landscape, aesthetics, recreation, tourism, and cultural heritage aspects of urban areas, 
therefore improving overall wellbeing of inhabitants [97]. Effective incorporation of 
this approach into models enables evaluation of all direct and indirect benefits of 



167

Latest Developments in Sustainable Water Management

GI, and an increase in investment opportunities and development of green economy. 
However, this step is still challenged by the development of indicators that can 
adequately present various aspects of ecosystem services [98], [99].

2.6. Coastal Engineering

Coastal engineering is a branch of civil engineering concerned with the construction 
at or near the sea coast where specific demands are imposed on the structure. 
Specific conditions are defined by the agency of wind waves, tidal oscillations, storm 
surges, tsunamis, and rough environment of salt seawater.
As to the future trends in coastal engineering, several influencing factors should be 
highlighted: 1. development of CPU power, 2. rising of environmental awareness and 
climate change, 3. an ever-growing database of easily accessible knowledge through 
the internet, 4. rising of image capture and processing technology and, finally, 5. 
artificial intelligence. 
Ocean hydrodynamics is very complex due to interaction between several 
generators such as tidal oscillations, wind forcing, inertial characteristics of the water, 
etc. Such complex hydrodynamics has been for many years described by simplified 
mathematical models and an empirical approach. Thanks to the increasing CPU 
power of commercial computers, the complex hydrodynamics can be described using 
numerical models by modelling water movement in a more detailed manner. The main 
initiators of such trend are private companies who embed hydrodynamic numerical 
schemes in a friendly software environment suitable for engineering practice. Such 
trend will in the future lead to the situation where a complex interaction between 
the coastal structures and seawater will be described quite accurately, and will enable 
detailed design of shape, stability and functionality of structures. 
The rising of environmental awareness has resulted in the situation where the civil 
engineering branch is increasingly faced with the challenges of construction with 
special care to nature. The optimisation between additional costs for environmental 
care and benefits from clean environment is a special issue of eco approach, and 
will in the future be the subject of significant scientific efforts. The care for nature is 
expressed through the reduction of CO2 emissions in construction works, discovery 
of new eco materials, and adoption of special approaches involving recycling, reuse 
and reduced use of materials.
The knowledge required for the design and construction of coastal structures is easily 
accessible through international web bases of scientific journals, and also through 
design codes and standards (such as Eurocode, US Corps of Engineers Coastal 
Engineering Manual, Australian standards, Japanese Standards etc.). This knowledge is 
not only easily accessible but is constantly growing through national and international 
research projects financed by private and state foundations. Future trends in civil 
engineering will lead to the production of expert software and expert systems based 
on this growing knowledge. The potential problem which will arise from such trend is 
separation of engineers and scientists from original methods, and excessive reliance 
on software as “black box” systems. 
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Remote sensing and video capturing from air and land are a technology that is 
concerned with data acquisition and visualization [100]. New technology gives higher 
resolution, greater number of data and more frequent surveys, thus enabling better 
project planning and monitoring in the phase of construction and exploitation.
Artificial intelligence [101] influences not only technologies n civil engineering but is 
present in all aspects of human life. But the greatest influence is expected to occur in 
the field of construction through automation of works (navigation of trucks, cranes 
and floating cranes, navigation and automation of special floating equipment, control 
of the works, etc.). 

3. Conclusion

The presented results of water body mapping, elevation model development, and actual 
evapotranspiration estimation, confirm that progress in hydrological and hydraulic 
modelling is closely linked with the progress in remote sensing techniques and methods. 
Hydroscience and engineering have seen application of remote sensing information 
and contemporary methods for a successful space-time monitoring of many other 
phenomena, such as discharge and surface water elevation, land and vegetation cover, 
rainfall and snowfall, sedimentation, snow depth, snow cover, and snow water equivalent, 
surface soil moisture, vegetation stress, etc. Advanced oxidation processes are especially 
considered as a highly competitive technology for water purification and removal of 
high chemical stability contaminants, because they do not demand the addition of other 
substances. Destruction of water contaminants occurs by thermal decomposition and 
various radical reactions. Although sonochemical processes have proven to oxidize 
various contaminants, the application of ultrasound is highly energy intensive and results 
in a very low electrical efficiency in comparison to other advanced oxidation-process 
technologies. Therefore, the coupling of ultrasound with other advanced oxidation-
process technologies has been receiving increased attention in recent years.
Computational Fluid Dynamics models have proven to be an inevitable tool in the 
process of disseminating knowledge and understanding hydrodynamic and biochemical 
processes in the water purification technology. Their proper application allows better 
design of particular reactor elements that are under significant hydrodynamic influence.
Efforts in successful implementation of green infrastructure elements in urban 
drainage systems are currently going towards upgrading existing models and tools 
with new decision support systems based on artificial intelligence algorithms, and 
towards developing effective ecosystem services modules.
New technological innovations, digital solutions and availability of big data, 
artificial intelligence, together with non-technical innovations regarding social, 
cultural, ecological and institutional aspects, have opened up whole new areas of 
transdisciplinary research related to hydroscience. Further improvements and 
continuation of research and development, as well as fully operational application of 
hydrological-hydraulic models, are closely linked with the progress in accuracy and 
public availability of data used as input to simulate real-time conditions.
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